
NASA-CR-192399

COMPUTER SYSTEMS LABORATORY
I I
STANFORD UNIVERSITY" STANFORD, CA 94305-2192

Studies In Prolog Architectures

Evan Tick

Technical Report No. CSL-TR-87-329

, : _ ,

(

7/,/- _ 3.- ,__/_

/# _ ,,_rL.3

June 1987

(:4ASA-C'-_-192399) STUDIES IN PROLOG

ARCHIrFCTUW.E5 (St mford Univ.)

2 3 3 ;

Z9/6o

N93-71519

Uncl as

0146983

This dissertation research was supported by an IBM Graduate Fellowship and by
NASA under consortium agreement NCA2-109.

Studies in Prolog Architectures

by
Evan Tick

TechnicalReportNo. CSL-TR-87-329
June 1987

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

Abstract

This dissertation addresses the problem of how logic programs can be made to execute at high speeds.
lh'olog, chosen as a representative logic programming language, differs from procedural languages in that
it is applicative, nondeterminate and uses unification as its primary operation. Program performance is
directly related to memory performance because high-speed processors are ultimately limited by memory
bandwidth and architectures that require less bandwidth have greater potential for high performance. This
dissertation reports the dynamic data and instruction referencing characteristics of both sequential and
parallel Prolog architectures and .corresponding uniprocessor and multiprocessor memory-hierarchy
performance tradeoffs.

Initially, a family of canonical architectures, corresponding closely to Prolog, is defined from the
principles of ideal machine architectures of Flynn, and is then refined into the realizable Warren Abstract
Machine (WAM) architecture. The memory-referencing behavior of these architectures is examined by
tracing memory references during emulation of a set of Prolog benchmarks. Measurements of the
canorucai architectures indicate the upper memory-performance bounds of sequential execution.
Measurements of the WAM provide frequencies of memory references and indicate that the WAM
approaches the performance of the canonical Prolog architectures on current hosts,

Two-level-memory hierarchies for both sequential (WAM) and parallel (PWAM) Prolog architectures
arc modeled. PWAM is the Restricted-AND Parallel architecture of Hermenegildo. Local memory
designs are simulated using memory traces, whereas main memory designs are analyzed with queueing
models. The results show that small buffers (256 words or less) can significandy reduce Prolog's
memory bandwidth requirement, primarily by capturing shallow backtracking information. Larger, more
general local memories, such as caches, are necessary in high-performance systems to further reduce
memory traffic. Local memory consistency protocols for a shared memory PWAM multiprocessor are
analyzed. Measurements indicate that the memory-referencing overheads of exploiting Restricted-AND
Parallelism am minor. These results showy, however, that as few "as eight high-performance processing
eIements can saturate a shared bus. With emerging bus technology and properly interleaved shared-
memory, limited-size multiprocessors of this type have great potential for cost-effective speedups. Th/s
dissertation provides previously unavailable information concerning the memory-referencing
characteristics of logic programming languages executing on hierarchical memory organizations, thus
contributing to processor memory design.

Key Words and Phrases: Prolog, Canonical Interpretive Form, Warren Abstract Machine, Restricted-
AND Parallel Prolog, instruction set architecture, emulation, memory hierarchy, trace-driven memory
simulation, queueing analysis.

Copyright © 1987

by

Evan Tick

Acknowledgements

Many people deserve acknowledgement for helping me to accomplish this doctoral

dissertation. My advisor, Michael F'lynn, has generously shared his knowledge and experience

in supporting my research. My associate advisor, Stephen Lundstrom, has painstakingly

reviewed the dissertation. I am also thankful for the encouragement and assistance of Susan

Gcr¢ and the fellow graduate students with whom I have worked most closely: Fung Fung Lee,

Bill Lynch, Hans Mulder, and Andrew Zimmerman.

At Quintus I have been fortunate to work in a challenging environment created by Lawrence

Byrd, William Kornfeld and David H. D. Warren, where many fresh ideas were generated (and

stale ones discarded). It has also been a rewarding experience and a great pleasure to work with

David Bowen, Tim Lindholm, Brendan McCarthy, Richard O'Keefe, Fernando Pereira, and

David Zn.idarsic.

The "WAM" and "PWAM" architectures discussed in this dissertation are entirely the

respective works of David H. D. Warren and Manuel Hermenegildo, to whom both I am greatly

indebted. Bill Lynch helped write the WAM emulator described in Chapter 3. Hans Mulder

supplied and helped analyze the Pascal data. Philip Bitar, of the University of California at

Berkeley, patiently explained cache coherency to me. Manuel Hermenegildo and Richard

Warren, of the Microelectronics and Computer Technology Corporation (MCC), supplied and

helped analyze the PWAM multiprocessor traces. This dissertation was most strengthened by

numerous discussions with Fung Fung, Manuel, and Tim.

iii

Table of Contents

1. Introduction

1.1. Statement of Problem

1.2. Contributions
1.3. What is Prolog?

1.4. Why Prolog?
1.5. Previous Work

1.5.1. Architectures

1.5.2. Benchmarking
1.5.3. Memory Organization

1.6. Dissertation Outline

2. Prolog Architectures

2.1. Canonical Proiog Architectures
2.1.1. CIF Data Encoding
2.1.2. Naive and Traditional Prolog CIFs

2.1.2.1. CIF Storage Model
2.1.2.2. CIF Instruction Encoding
2.1.2.3. CIF Data Referencing

2.1.3. Register-Based CIF
2.1.3.1. Two-level Name Space
2.1.3.2. Instruction Encoding

2.1.4. Other CIF Metrics: Stability
2.1.4.1. Trailing
2.1.4.2. Indexing -

2.1.5. Summary
2.2. Environment Stacking Architectures

2.2.1. DEC-10 Prolog Abstract Machine
2.2.2. Warren Abstract Machine

2.2.3. Comparison Between Prolog-10 and WAM
2.2.4. Lcode Architecture

2.2.4.1. Lcode Instruction Set

2.2.4.2. Lcode Storage Management
2.2.4.3. Lcode Instruction Encoding
2.2.4.4. Split Stack Architecture

2.3. Restricted AND-Parallel Prolog Architecture

2.4. Summary

1

1
3

5
9

10
10
11
12

14

17

18

20
21
22
25
30
33

34
37
40
40
43
44
45
46
48
49

53
53
56
58
59

61
64

PREI_EDING P/_..,C. BLANK NOT FILMED
_T

.x

3. Prolog Architecture Measurements

3.1. Methodology
3.1.1. Compiler
3.1.2. Assembler
3.1.3. Emulator
3.1.4. Simulators

Benchmarks

WAM Referencing Characteristics
3.3.1. Data Referencing
3.3.2. Instruction Referencing

3.4. CIF Referencing Characteristics
3.5. PWAM Referencing Characteristics

3.6. Summary

4. Uniprocessor Memory Organizations

4.1. Memory Model
4.2. Data Referencing

4.2.1. Choice Point Buffer

4.2.2. Stack Buffe,"
4.2.3. Environmert! Stack Buffer

4.2.4. Copyback Cache
4.2.5. Smart Cache

4.2.6. Comparison of Data Memories
4.3. Instruction Referencing

4.3.1. Instruction Buffer
4.3.2. Instruction Caches

4.4. Local Memory Configurations
4.5. Main Memory Design

4.5.1. General Queueing Model

4.5.2. Memory Bus Model
4.5.3. Copyback i D Cache System
4.5.4, Stack and Instruction Buffer System

4.6. Summary

5. Multiprocessor Memory Organizations

5.1. Memory Model
5.2. The Consistency Problem

5.2.1. Broadcast Cache Coherency

5.2.2. Locking in Broadcast Caches
5.2.3. Hybrid Cache Coherency

5.3. Coherent Cache Measurements

5.4. Shared Memory Design
5.4.1. Shared Memory and Bus Queueing Models

5.4.1.1. Hybrid Cache System
5.4.1.2. Broadcast Cache System

5.4.2. Measurements

5.5. Summary

67

67
69

70
70
71
71
73
73
87

91
95
98

101

103
!06
106

109
112
114
120
122
125
127
130

134
137
138
144
144
152
156

161

161
164
166
167
169

172
179
179
180
183
184
192

vi

6. Conclusions and Future Research
6.1. Conclusions
6.2. Future Research

Appendix A. Glossary of Notation
Appendix B. Lcode Instruction Set Summary
Appendix C. Local Memory Management Algorithms

193
193
198
201
205
213

vii

List of Figures

Flgure 1-1:
Figure 1-2:

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:

Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:

Figure 2-9:
Figure 2-10:
Figure 2-11 :

Figure 2-12:
Figure 2-13:

Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 3-1:

Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:

Figure 3-6:
Figure 3-7:

Figure 3-8:

Figure 3-9:
Figure 3-10:
Figure 3-11 :
Figure 3-12:

Figure 3-13:

Figure 4-1:
Figure 4-2:

Prolog Program Example-isotree/2 5
Prolog Program Example: flattenCode/3 8
Traditional Prolog CIF Storage Model 22
Traditional Prolog CIF Clause Examples 28
CIF Instruction Encoding (bits)m append/3 Clause 2 30
Traditional CIF Data Referencing (words) - append/3 31
Alternative CIF Data Referencing (words) - append/3 33

Register-based Prolog CIF Storage Model 35
Register-based Prolog CIF Program Examples 38
CIF Instruction Encoding (bits) -- append/3 Clause 2 39

Prolog Program Example: Max-N+1 Trails 42
Prolog Program Example: No Trails 42
Prolog Program Example: Moving Comparison Into 42
"Head"

Program Example: WAM/Prolog-10 Comparison 50
Lcode Program Example: flattenCode/3 54
Instruction Trace of Head Failure: flattenCode/3 55
Instruction Trace of Head Success: flattenCode/3 55

RAP-Prolog Program Example: isotree/2 62
Proiog Memory Performance Measurement 68

Methodology
Data References By Area 76
Choice Point Size Frequency Distributions (words) 79
Environment Size Frequency Distributions (words) 80
Choice Point Depth Frequency Distributions (words) 82

Environment Depth Frequency Distributions (words) 83
Choice Point Reset Depth Frequency Distributions 85
(words)
Environment Reset Depth Frequency Distributions 86
(words)
Heap Reset Depth Frequency Distributions (words) 88

Dereference Chain Length Distribution 89
Instruction Format Distribution 90

RAP-Prolog Memory Performance Measurement 96
Methodology
RAP-Prolog Program Example: Sderiv 97

Uniprocessor Memory Model 103
Choice Point Buffer Model 106

PR_L_iHG P,_K3E EL._Y, I"_OT FIL_,_D ix

Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:

Figure 4-7:
Figure 4-8:

Figure 4..9:
Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:
Figure 4-15:

Figure 4-16:

Figure 4-17:
Figure 4-18:
Figure 4-19"

Figure 4-20:
Figure 4-21 :

Figure 4-22:
Figure 4-23:
Figure 4-24:
Figure 4-25:

Figure 4-26:

Figure 4-27:

Figure 4-28:
Figure 4-29:

Figure 4-30:

Figure 5-1:
Figure 5-2:
Figure 5-3:

Figure 5-4:
Figure 5-5:

Figure 5-6:

Figure 5-7:

Figure 5-8:
Figure 5-9:

Figure 5-10:

Figure 5-11:

Choice Point Buffer Performance Measurements

Stack Buffer Model: Object Allocation
Stack Buffer Performance Measurements

Effect of Dirty Bits on Stack Buffer Traffic Ratio
Choice Point Reference Hit Ratios
Environment Stack Buffer Performance

Measurements

Comparison of Environment Reference Hit Ratios
Data Cache Performance Measurements

Data Cache Dirty Line Ratio
Comparison of Copyback and Smart Caches
References Saved by Smart Cache
Local Data Memories: Hit Ratio
Local Data Memories: Traffic Ratio

Pascal and Prolog Copyback Data Cache
Performance Measurements

Instruction Run Length Distribution (bytes)
instruction Buffer Traffic Ratios
instruction Cache Hit Ratio
Instruction Cache Traffic Ratio
Instr/Data Cache Performance Measurements

I/D Cache Dirty Line Ratio
Configuration Hit Ratios
Configuration Traffic Ratios
Mean Peak Sustainable Request Arrival Rate

Flores Model (;kp = 0.6)
Copyback I/D Cache Queueing Model: 2 Word Bus

Copyback I/D Cache Queueing Model: 1 Word Bus
Stack Buffer Configuration: Performance
Degradation
Stack Buffer Configuration: Memory Bandwidth
Efficiency

Multiprocessor Shared Memory Model
Sderiv Fit: D-Cache (4 word line) Hit Ratio
Sderiv Fit: D-Cache (4 word line) Traffic Ratio
Data Cache Traffic Ratios: Sequential Benchmarks

Sderiv Traffic Ratios of Coherency Schemes for
Varying #s of PEs
Sderiv Traffic Ratios of Coherency Schemes for
Various Cache Sizes

Hybrid Cache System With 16-Way Interleaving
Hybrid Cache System With 32-Way Interleaving
Memory Efficiency_ 1024 Word Hybrid Cache
System

Percent Performance Degradation: 1024 Word

Hybrid Cache System
Bus Efficiency: Hybrid Cache System (8 PEs/2
word bus)

108
110
111
113
113
115

116
118
119
121
122

124
124
126

128

129
131
131
133
134
136

136
141
143

149

150
155

155

162
174
174
176
177

178

185
186
188

188

190

Figure 5-12:

Figure 5-13:

Figure C-1:
Figure C-2:
Figure C-3:
Figure C-4:

Bus Efficiency: 1024 Word Hybrid Cache System (2 190

word bus)
Broadcast Cache System Performance (2 word 191

bus)
Choice Point Buffer Management 213
Stack Buffer Management 214
Stack Buffer Management Support 215
E-Stack Buffer Management 216

xi

List of Tables

Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:

Table 2-5:
Table 2-6:

Table 2-7:
Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 3-5:

Table 3-6:
Table 3-7:
Table 3-8:

Table 3-9:

Table 3-10:
Table 3-11 :

Table 3-12:

Table 3-13:

Table 3-14:
Table 3-15:
Table 3-16:

Table 3-17:

Table 4-1:
Table 5-1:
Table 5-2:
Table 6-1 :
Table B-1:
Table B-2:

Table B-3:

WAM Model State Registers 48

WAM and Prolog-10 Stack Correspondence 51
WAM and Prolog-10 Memory Referencing 51
Prolog-10 - WAM Tradeoffs 52
Lcode Instruction Set 56

Lcode Data Object Formats 57

PWAM Storage Model (notes 1-7 in text) 63
Stanford Emulation Laboratory Proiog Tools 68
Local Memory Simulators 71
Summary of Prolog Benchmarks' Characteristics 72
Runtime Data Areas in Words 74

Data Referencing Characteristics of Benchmarks 75
Summary of High-level Prolog Memory Statistics 78
Heap Reference Depth Statistics (in words) 84
Instruction References for Benchmarks (per 90

Encoding 1)
Comparison Between Prolog CIF Memory 93
Bandwidths

WAM Instruction Bytes Referenced (per CIF) 93
Standard (WAM) Indexing Memory Bytes 93
Referenced (per CIF)
WAM (De)trailing Memory Bytes Referenced (per 93

CIF)
Data Referencing of Single and Split Stacks (Per 94

Single)
Comparison Between Single and Split Stack Models 94
Summary of PWAM Sderiv Benchmark on Four PEs 98
PWAM Sderiv Data Bandwidth Efficiency 98
PWAM Sderiv Data Referencing Characteristics on 99
Four PEs

PLM Timings 139
Prolog Binding Statistics 171
Fit of Sderiv to Large Benchmarks 175
Prolog, FORTRAN, and Pascal 196
Lcode Instruction Set Formats (notes 1-4 in text) 207
Lcode Instruction Reference Characteristics (notes 209

1-7 in text)
Lcode Characteristics by Type 211

PRL3gEOING P_IG.E BL,_.N,_(NOT K',LMED

..°

Xlll

3r-

Chapter 1

Introduction

1.1. Statement of Problem

The main reason that current computer applications in symbolic processing fail to meet

speed constraints on current machines is the gap between the applications and the

languages and architectures in which they are implemented. Applications such as

natural language understanding and symbolic equation solving, as compared with

conventional applications such as numerical modeling and simulation, are further

removed from conventional procedural/functional languages such as Pascal and Lisp

and their corresponding numeric/scientific processor architectures. This is because

these ambitious new applications must, in a sense, be written as meta-level interpreters.

A meta-level interpreter is a program which performs additional levels of interpretation

to implement features not present in the host language, e.g., nondeterminate execution

for parsing or a reduction mechanism for theorem proving.

Any approach to improving program performance involves implementing these

applications with appropriate languages and designing efficient architectures that either

directly correspond to these languages or support interpretation of these features.

Features which previously required meta-interpretation are now included in the

instruction set and are implemented directly in the architecture.

This dissertation presents a study of abstract machine architectures for Prolog, a well-

known logic programming language. Logic programming is _ programming paradigm

constructed from the abstract model of fin-st order logic. Prolog is representative of that

class of languages with powerful enough functionality to facilitate the development of

advanced applications. Prolog is used primarily for artificial intelligence and database

applications, as well as general applications such as compiler writing. Prolog differs

from procedural languages, such as Pascal and Lisp, in that it is applicative (variables

can be bound at most once in an execution path), nondeterminate (alternate paths are

executed in an attempt to create a consistent set of variable bindings), and uses

unif'lcafion (a type of patternmatching) as the primary operation. Thus, meansto
efficient Prologexecutionwill likely differ from thoseof conventionallanguages.

As the gap between language and architecturedecreases,fewer instructions are
executedwithin the program. Theseinstructionsdo morework andmay thereforebe
more difficult to implement. In most high-level-language-architecturemachines,the

complexityof the instructionsetforcesa microcodedimplementation.An alternativeis
to implement the abstractmachineinterpretively on a lower-level host machine. The
selection of the most cost-effective implementation strategy depends on many
considerations m technology, instruction set compatibility, design effort, etc.
Regardlessof therelativeweightof eachconsideration,anydesignapproachrequiresan
understandingof the dynamicProlog programbehavior,i.e., the characteristicsof the
abstractmachinecorrespondingto Prolog.

Theproblemof increasingPrologexecutionspeedis approachedfrom thevantagepoint
of memorydesign. High-speedprocessorsareultimately limited by memorybandwidth
and architectures that require less bandwidth have greater potential for high
performance. The memory-referencingcharacteristicsof well-designed abstract
machinesare minimal in the sensethat a host which directly implementsthe abstract
machineinstructionsas atomicactionswill make fewermemory referencesthanother
types of hosts. No matter what the host, however, the memory-referencing

characteristics measured in this dissertation are, for the most part, applicable.

A family of canonical Prolog architectures with advantageous bandwidth requirements

is defined in close correspondence to the semantics of Prolog. The Warren Abstract

Machine (WAM) architecture [Warren 83a], used for memory design throughout the

dissertation, is a member of this family. Measurements of the Prolog Canonical

Interpretive Form (CIF) indicate upper memory-performance bounds afforded by

"ideal" attributes (which go beyond the WAM).

High-speed uniprocessor performance is necessary, even within a multiprocessor,

because not all types of parallelism exist or can be exploited in all applications. Within

a shared memory multiprocessor, local processor memories are necessary to reduce

bandwidth and allow undegraded execution of sequential code. The main portion of the

dissertation conce_;. _- modeling and analysis of two-level memory hierarchies for

sequential and parallel Prolog architectures. A trace-driven simulator is used to

measure local memories. Sequential Prolog programs are compiled into the WAM

instruction set and emulated, producing a memory-address-trace file. Restricted

• ° 3

AND-Parallel (RAP) Prolog programs [Hermenegildo 86] are compiled into the PWAM

instruction set [l--lermenegildo 87a] and similarly emulated, assuming a shared memory

multiprocessor with a smaU number of tightly-coupled high-performance processing

elements. Main memories are evaluated with asymptotic queueing models.

1.2. Contributions

This dissertation synthesizes logic programming architecture design with the lessons

learned from procedural programming architecture design and memory organization.

The field of logic programming machine design is new. It is therefore not surprising

that little has been published in the area of logic programming machine performance.

The vast store of knowledge and folklore available about procedural language

architectures and machines is absent for logic programming languages. This

dissertation helps fill this gap.

In this dissertation, successive refinements of models of abstraction allow the

measurement of the expected memory performance of both sequential and parallel logic

programming languages on host processors. The initial level of abstraction is the

Prolog source language, leading to canonical interpretive forms (CIFs) for Prolog.

These canonical architectures are refined into realizable architectures (Direct

Correspondence Architectures -- DCAs), such as the WAM and PWAM. Simulations

of these architectures executing on a two-level memory model produce memory

bandwidth requirement statistics. Refinement of the simple two-level memory model

into a queueing model allows the measurement of time dependent statistics, such as

processor performance degradation.

At the various levels of abstraction, important results are uncovered. At the architecture

level, it is shown that traditional CIF models can be constrained, at little cost in

performance, to CIFs more suitable for current technology hosts. The WAM can be

viewed as a DCA defined from such a constrained CIF. At the memory simulation

level, shallow backtracking is shown to be the primary source of the WAM bandwidth

requirement. The analysis of the efficiency of several memory organizations at

reducing the bandwidth requirement indicates that caches offer the best memory

performance -- a result similar to that found for procedural language processors [Alpert

84]. Less cosily memory organizations also perform quite well, a result of the WAM's

high locality. At the queueing analysis level, PWAM is shown to exploit parallelism,

on a tightly-coupled shared memory multiprocessor, with little overhead with respect to

the WAM. It is shown, however, that even for a limited number (eight) of high-

performance processing elements, bus capacity is the critical performance bottleneck.

This is not to say that shared memory multiprocessors are an inferior design -- on the

contrary, it is shown that with emerging bus technology and an interleaved shared

memory, this, type of limited multiprocessor organization can achieve significant

speedups exploiting Restricted-AND Parallelism alone.

The primary contribution of this dissertation is the successive refinement of

architectures and performance models for logic programming languages, resulting in an

accurate description of their dynamic memory-referencing behaviors. A summary of

the detailed contributions of the dissertation follows.

• A family of canonical architectures, called CIFs, closely corresponding to
Prolog, are described. Measurements of the CIFs are presented, indicating

the memory-_erforrnanc¢ bounds afforded by am'ibutes such as tight

instruction-encoding, split stacks and ideal indexing.

• The memory-referencing characteristics of realistic Prolog programs ire

determined. Evidence is presented indicating that shalJow backtracking is
the primary memory-performance bottleneck of environment stacking

Prolog architectures.

• Local memories which reduce performance bottlenecks, for various costs,
are designed and analyzed. These memories include choice point buffers,

stack buffers, copybaci¢ data caches, "smart" copyback data caches,
instruction buffers, and instruction caches.

• Local memories which solve shared memory multiprocessor consistency

problems, specifically for the Restricted AND-Parallel Prolog architecture
PWAM, are designe_ and anal)zed. These memories include broadca_'_,

hybrid, a1_d write-through coherent caches. The hybrid cache is a ne_.
combination of write-through and write-broadcast cache designs, that takcs

advantage of RAP-Prolog attributes to guarantee consistency with low

overheads and inexpensive hardware.

• Interleaved main memories, for both sequential and parallel architectures,

are analyzed with queueing model formulations of the local memories.

In the remainder of this chapter, Prolog is f'n-st introduced with examples. Arguments

are then given for studying high-level Prolog architectures, as opposed to other

alternatives. Lastly, previous work in the fields of architecture design, benchmarking,

and memory organization of logic programming languages and machines is reviewed.

5

1.3. What is Prolog?

Prolog is the f'trst practical logic programming language, designed by A. Colmerauer in

1973 [Roussel 75], with its theoretical groundwork laid by R. Kowalski in 1974

[Kowalski 74]. Prolog is the primary representative of logic programming languages

-- most other logic programming languages are derivatives of the Prolog computation

model. To the first order, results of Prolog execution measurements can be extended to

Prolog-like languages and logic programming languages in general.

Prolog programs and data are composed of terms. A term is either a simple term or a

compound term (also called a complex term or structure). A simple term is either a

constant or a variable. A smacture consists of afunctor and arguments. The functor is

composed of a name and arity (this is usually written as name/arity). The name is the

symbolic identifier of the structure, the arity is the number of arguments, and the

arguments themselves are terms. An example of a structure is

tree (1, void, Subtree), with functor tree/3. A constant is a structure with

zero arity. This may be a number or atomic identifier. Examples of constants are 1 and

void. A (logical) variable is an object which can be bound (only once) to another

term. Prolog uses a capitalized identifier to represent a variable, e.g., Subtree.

A Prolog program consists of collections of clauses known as procedures. A clause is a

term consisting of a head and a body. The head contains the formal parameters of the

procedure definition. The body consists of a (possibly empty) set of goals. A goal is a

procedure invocation with its corresponding passed parameters. A procedure is

uniquely specified by the name and arity of the head of each of its clauses. The arity of

a procedure represents the (fixed) number of arguments it must be passed when

invoked.

isotree (void, void) .

isotree (tree (X, Leftl, Rightl) ,tree (X, Left2, Right2)) •-

isotree (Leftl, Left2),

isotree (Right1, Right2) .

isotree (tree (X, Left1, Right1) ,tree (X, Left2, Right2)) "-

isotree (Left1, Right2),

isotree (Rightl, Left2) .

Figure 1-1: Prolog Program Example: isotree/2

Figure 1-1 illustrates a program (from [Sterling 86]) which determines if two trees are

isomorphic. The program consists of a single recursive procedure, isotree/2, which

has three clauses. The fn'st clause has an empty body and is called a unit clause or fact.

The second two clauses are called conjunctive clauses, non-unit clauses, or rules

because they define relations between facts and/or other rules. A third necessary

program construct is a query, e.g.,

_- isotree (tree (I, tree (2, void, void), tree (3, void, void)) ,X) .

In its simplest form, a query is a procedure invocation with external input, i.e., a request

to execute a program with given data.

Prolog semantics can be viewed declaratively or procedurally. The declarative view

treats a procedure as a logical disjunction of its clauses and a clause as a logical

conjunction of its goals. This view benefits programmers. Variables in queries are

existentially quantified. For instance, the query given above is read: does there exist a

tree x such that the tree represented pictorially below is isomorphic to it?

1

/\
/ \

2 3

Variables appearing in the head of a rule are universally quantified. Variables

appearing only in the body of a rule are existentially quantified. For instance, the

second clause of isotreo/2 has an informal declarative reading: any two trees are

isomorphic if they both have the same value and the left subtree of one ,s isomorphic to

the left subtree of the other and the right subtree of one is isomorphic to the right

subtree of the other.

The procedural view treats a procedure as an ordered sequence of entry points (clauses)

which must be executed until one succeeds. A clause is treated as an ordered sequence

of procedure calls (goals), all of which must be executed for success. Upon failure of

any goal, the computation is backed up to the entry of the most recently invoked

procedure with unattempted clauses. That procedure is re-entered at its next clause and

the computation continues, The main implementation distinction between Prolog and

procedural languages is that Prolog programs backtrack in this manner.

The procedural semantics are derived from the observation that to solve an existential

query Q with a universal fact P, one finds a common instance C, i.e., two substitutions,

Xl and x2, such that C = P_I = Qx2" There are two deduction rules in effect here:

generalization -- an existential query is a logical consequence, of an instance of that

query, and instantiation -- an instance of a universally quantified fact is a logical

consequence of that fact. The combination of these rules is called resolution.

Generalizing, the query Q is a logical consequence of program P with the universal rule

A :- B1,B2,...B n, if A and Q have a common instance and B 1, B2,... B n are also logical

consequences of P. This is called Horn clause resolution ['Robinson 65]. In other

words, a goal is executed by attempting resolution with the heads of the clauses of the

procedure of the same name and arity as the goal. Successful resolution involves

successfully unifying each goal argument to each corresponding head argument.

Unification finds a most general common instance of its input terms to avoid

specializing the proof more than necessary.

If the goal cannot match (unify with) any clause of its associated procedure, the goal

fails. When the goal matches a clause and it can be determined that no other clauses

can match, it is called determinate execution. When the goal matches a clause and other

(untried) clauses can possibly also match, it is called nondeterminate execution.

The scope of a variable is a clause; therefore the occurrences of X in the second and

third clauses of isotrae/2 in Figure 1-1 are unrelated. The goal

isotroe (tree (x, void), void) can successfully resolve with the heads of either

the second or third clauses. Note again that the scopes of the x in the goal

£sotroo (tree (X, void), void) and the X in the clause heads are independent,

and therefore these two variables are unique and can be bound to distinct objects. The

goal isotree(void, void) can match only the first clause and the goal

isotree (x, Y) can match any clause.

For convenience and efficiency, Prolog has been given additional support for:

• lists -- a list, which is a structure with functor ./2, is given a special

syntax in Prolog. The list ' ' (X, Y) can be written as [x I Y]. A list of
two objects, '.' (1,'.' (2, [])) can be written as [1,2]. Note that

[] is a special constant representing nil (end-of-list). In most tagged
Prolog architectures, including the ones considered in this dissertation, the

list data type is given a unique tag.

• built-ins -- many procedures are predefined in Prolog. The most
frequently used of these include arithmetic, construction and destruction of

terms, conditional tests for types of terms, and strict equality (wherein no

unification is allowed to take place).

8

* cut -- this is an extra-logical control feature, represented by !, used to

prevent undesired backtracking over the clauses in a. procedure. As a goal
in a clause of a procedure, cut always succeeds, causing a side effect of
disallowing subsequent clauses of that procedure to be tried in the event of

backtracking.

As another example, Figure 1-2 shows the most commonly executed Prolog procedure

in the QC1 benchmark measured later in this dissertation. The flattenCode/3

procedure flattens a binary tree structure into a list removing empty sequences

represented by the atom void, e.g., the query

_- flattenCode((l, (2,3,void, (4,5))),X, []) .

instantiates X to the list [1,2,3,4,5]. Read procedurally, flattenCode/3

recursively processes the left and right branches of a subtree, using a difference list (see

[Sterling 86, p.239]) to collect the resulting leaves. The second and third arguments of

the procedure represent the difference list as an answer list and the tail of the answer

list, facilitaung efficient concatenation of the resulting sublists from the left and right

branches. This method of concatenation is illustrated in the second clause, where the

answer is composed by instantiating the tail of the first sequence's flattened list,

Code1, to the second sequence's flattened list.

flattenCode (void, Code, Code) "- !.

flattenCode ((Seql, Seq2) ,CodeO, Code) :- !,

flattenCode (Seql, CodeO, Code1),

flattenCode (5eq2, Code1, Code) .

flattenCode (Instr, [Instr ICode], Code) .

Figure 1-2: Prolog Program Example: flattenCode/3

Read declaratively, flattenCode/3 specifies three rules concerning flattening. The

result of flattening an empty sequence is an empty difference llst. The result of

flattening a binary tree, (Seqa, Seq2), is Code0 (with tail Code), if flattening the.

left subtree, Seql, results in Code0 (with tail Code1) and flattening the right subtree,

Seq2, results in Code1 (with tail Code). The result of flattening anything else,

Instr, is a list with head Instr and tail Code.

1.4. Why Prolog?

This dissertation discusses how to make Prolog programs execute quickly. Alternative

symbolic languages, such as Lisp[McCarthy 65, Steele 84], and parallel logic

programming languages, such as GHC [Veda 85], have not been considered here for the

following reasons.

Lisp, a symbolic language based on function application is both more popular and more

mature than Prolog. It is argued in Tick [Tick 86] that Prolog has greater semantic

content than Lisp because the functionality of nondeterminate execution and unification

are integrated intoProlog and its architecture. In addition, Prolog has clean, declarative

semantics and is applicative, facilitating the writing, debugging and implementation of

parallel programs.

Parallel logic programming languages are of considerable interest for attaining high

performance on future multiprocessors. Gupta [Gupta 86] and others have shown,

however, that unlimited parallelism does not exist in many application programs.

Therefore, as with conventional multiprocessors, one performance bottleneck will be

the speed of sequential execution of a single processing element. The view taken in this

dissertation is in agreement with Warren [Warren 87], Butler et. al. [Butler 86],

Hermenegildo [I-Iermenegildo 87a], and others, who propose parallel architectures for

Prolog built around an efficient sequential architecture, i.e., storage model. These

architectures are based on the hypothesis that the efficiency of single processor

execution outweighs the restricted amount of parallelism uncovered by the language.

Local and shared memory design and modeling for PWAM are presented in this

dissertation.

The Prolog architectures analyzed here are based on the high-level WAM instruction

set. For the most part, results of this dissertation are applicable for any host. For

instance, the data referencing characteristics of the Programmed Logic Machine (PLM)

[Dobry 85], which interprets the WAM in microcode, will be approximately the same

as those of the WAM compiled directly into native MC68020 code ['Mulder 87a] or

executing on the SPUR microprocessor[Borriello 87]. Instruction referencing

characteristics of these hosts will be different however, and those results presented in

this dissertation cannot be freely applied to all hosts.

10

1.5. Previous Work

1.5.1. Architectures

Flynn and Hocvcl [F'lynn84, Flynn 79] derived the theory of ideallanguage machines

for FORTRAN. Wakefield [Wakefield 82] implemented thistheory by designing and

measuring ADEPT, a directcorrespondence architecture(DCA) for Pascal. This

dissertationextends these concepts from procedural languages to applicative,logic

programming languages, specificallyProlog. The step to Prolog ismuch largerthan

from FORTRAN to Pascal, because of attributessuch as single-assignment,

nondctcrminism, pointers,and unification.The singularcontributionof the idealProlog

architectureis the inclusion of a two-level name space (rcgistersand memory),

displaying superior memory-referencing characteristicsunder assumptions of a less

costly host.

Sequential Prolog architecturesdesigned by D.H.D. Wan-e_ ['Warren77, Warren 83a],

Byrd [Bowcn 83], and Bowen [Bowcn 84] arc called environment-stacking

architectures.These models utilizca stack holding localprocedure variablcsin frames

calledenvironments. These architectureshave been designed in the traditionalmanner,

as evolutionaryimprovements from interpreterto compiler to abstractmachine model.

A contributionof thisdissertationisto show how the theoryof ideallanguage machines

is another equally valid design methodology, resultingin the same high performance

Prolog architectures.

PWAM, de_gncd by Hcrmenegildo [I--lermenegildo87a], is an ANO-paralle! Prolog

extensionof the WAM. The PWAM model extends the initialwork inRestrictedAND-

Parallelismby DeGroot [DcGroot 84], by developing an efficientarchitecturewith a

viablebacktrackingsemantics. A contributionof thisdissertationisthe measurement of

the memory-referencing characteristicsof PWAM executing on a shared memory

multiproccssor. Itisshown thatPWAM's memory efficiencycompares well with the

WAM for sequentialcode and that PWAM has low corrimunicationoverheads for

parallelcode.

11

1.5.2. Benchmarking

Many-studies of both the static and dynamic characteristics of Prolog programs have

been undertaken. Warren [Warren 77] measured the execution time of small Prolog

programs to compare the performance of Prolog-10 with the performance of various

other programming languages. This was one of the f'trst sets of Prolog benchmarks

published with performance measurements. Wilk [Wilk 83] measured the execution

time of small, synthetic Prolog programs to compare different systems. He discusses

the important attributes of a Prolog system, ranging from garbage collection to

debugging capabilities.

Ross [Ross 84, Ross 86] measured the memory-referencing behavior of small sequential

Prolog programs. In contrast to this dissertation, he studied the Prolog working set, i.e.,

page referencing characteristics, between main memory and backing store. Prolog was

found to have a larger working set than typical C programs. A Prolog paging strategy

was designed which avoids transferring pages not belonging to the current valid storage

areas (as defined by stack pointers, etc.). For compiled programs, this reduced page

traffic by a factor of two over a conventional paging strategy.

Matsumoto [Matsumoto 85], Ratcliffe [Ratcliffe 85], and Onai [Onai 86] performed

static analysis of large Prolog programs (including versions of the CHAT and PLM

benchmarks used in this dissertation). They measured several attributes such as the

number of cuts per clause, and the number and type of built-in goals per clause. These

high-level statistics were aimed at evaluating compiler techniques, but not at directly

analyzing the performance of the programs. Since static code was measured, these

statistics don't necessarily reflect runtime behavior. Nor were these high-level analyses

based on architecture models, as is done in this dissertation.

Ratcliffe measured parallelism metrics from static benchmarks to determine the amount

of potential concurrency. Onai also measured parallelism metrics from two dynamic

benchmarks. These high-level analyses were also not based on architecture models.

Dobry [Dobry 85], however, measured the execution time and simple memory-

referencing characteristics of small Prolog programs, to illustrate the effectiveness of

the PLM architecture. This work was extended by Touati [Touati 87] to include several

larger benchmarks, including versions of the CHAT and ILI benchmarks used in this

dissertation. Touati's study presents measurements of detailed high-level characteristics

of the PLM, such as cdr-coding efficiency, with the aim of evaluating compiler

optimization strategies. Many of the results presented confLrm those in this dissertation.

12

Note that although the PLM was built, the studies cited above used simulation for their

measurements.

Hermenegildo [Hermenegildo 87a] measured the performance characteristics of small,

synthetic benchmarks to illustrate the effectiveness of the PWAM architecture. His

analysis assumed an idealized shared memory organization and emphasized high-level-

architecture characterization. This dissertation extends this work by analyzing PWAM

memory-referencing characteristics assuming a realistic shared memory multiprocessor

organization.

1.5.3. Memory Organization

A few comparative sequential Prolog hardware studies have been conducted [Borriello

87, Mulder 87a, Gee 87] and several Prolog machines built [Kaneda 84, Nakazaki

85. Nishikawa 83, Nakashima 87, Dobry 85, See 87]. The Kobe University PEK

m_chine [Kaneda 84] compiles Prolog into horizontal microcode that is executed from a

writable control store (WCS). The PEK architecture is similar to that of DEC- 10 Prolog

[Warren 77]. In addition to a 16K (by 96 bit) WCS, the PEK also incorporates a 4K

(by 3,* bit) stack buffer, 16K (by 34 bit) heap buffer, and 16K (by 14 bit) trail buffer.

The ICOT High-speed'Prolog Machine (HPM or Chi) instruction set is a derivative of

the WAM [Nakazaki 85]. The HPM incorporates an 8K (by 36 bit), ,*-way set

associative write-through I/D cache. Two ICOT Personal Sequential Inference (PSI)

machines have been designed. The PSI-I [Nishikawa 83] is a microcoded interpreter for

,_JL.0, a simple compiled form of Prolog. PSI-I is equipped with an 8K (by ,a_ bit),

2-way set associative copyback I/D (combined instruction, data) cache. The PSI-II

[Nakashima 87] instruction set is a derivative of the WAM. It incorporates a 4K (by 40

bit), directly mapped copyback I/D cache. The PSI-II incorporates a "write stack"

operation which avoids fetching the next (invalid) word at the top of stack. This is a

limited example of the mon_ general "smart cache" described and analyzed in this

dissertation.

The UC Berkeley Programmed Logic Machine (PLM) is a pipelined, microcoded

Prolog machine [Dobry 85, Dobry 84]. The machine instruction set is a derivative of

the WA!,,I. The PLM incorporates a f_ed-size single choice point buffer, a look-ahead

instruction buffer, and a write buffer (to queue outstanding write requests). The X1

[Dobry 87a], a version of the PLM built by Xenologic Inc., includes two directly

mapped 6,4K (32 bit) word caches (separating instructions and data) and removes the

13

choicepoint buffer. The local memories simulated in this dissertation are smaller (up to

1024 32-bit words) than those in the machines previously described. The intention is to

model local memories that can be integrated with the CPU.

The Mitsubishi Pegasus is a pipelined, RISC microprocessor for Prolog [Seo 87]. The

tagged, load/store architecture incorporates a shadow register set, similar to that

suggested in this dissertation. Measurements made of small benchmarks running on

Pegasus indicated that the shadow registers can improve program performance by up to

17% [Seo 87].

Borriello et. al. [Bordello 87] described and measured the execution of Prolog on

SPUR, a microprocessor with a tagged RISC architecture. 14 small Prolog benchmarks

were executed on the SPUR and PLM simulators, allowing comparison of execution

cycles. The results indicated that number of SPUR cycles executed was 2.3 times that

of the PLM. The number of SPUR instructions executed was 16 times greater than the

PLM. Bordello concludes that assuming similar memory configurations for PLM and

SPUR, the SPUR can achieve 66% of PLM performance, if minor tag modifications and

compiler improvements are made to SPUR.

Mulder anci Tick ['Mulder 87a] described and measured the execution of Prolog on an

MC68020 microprocessor. Approximation methods were used to compare PLM and

MC68020 execution cycles for three large benchmarks (the instruction frequencies

presented in Appendix B of this dissertation were used to estimate the number of

execution cycles). The results indicated that assuming equivalent main memory speeds,

the number of MC68020 cycles executed was 2.5 to 3.5 times that of the PLM.

Gee, et. al. [Gee 87] microcoded a VAX 8600 general-purpose computer to directly

emulate WAM instructions. They found that 85% of the PLM execution performance

could be obtained for simple benchmarks. Because a general-purpose host was used,

high-performance numeric computation was also achieved.

Studies 'in memory organizations for high-level procedural language architectures

include the works of Alpert [Alpert 84] and Mitchell [Mitchell 86]. Alpert described

and measured the data memory performance of contour buffers and copyback data

caches for Pascal architectures. The contour buffer is similar in function to the stack

buffer presented in this dissertation. Alpert's cache simt_lator is used here to make

uniprocessor copyback cache measurements, and has been extended to model write-

through caches. Mitchell described and measured instruction cache performance for a

14

wide range of architectures. Pascal benchmarks were simulated, providing performance

metrics with which to compare architectures.

Cache studies for traditional architectures are numerous. Most heavily referenced in

this dissertation are works by Smith [Smith 82], Bitar [Bitar 86a], Archibald [Archibald

86], and Hill [Hill 84]. Smith and Hill present detailed studies of uniprocessor cache

design and performance. Bitar and Archibald present detailed studies of multiprocessor

(coherent) cache design and performance. This dissertation extends these studies by

analyzing cache performance for logic programming language architectures.

1.6. Dissertation Outline

This dissertation assumes familiarity with Prolog (refer to [Sterling 86] for instance).

Detailed knowledge of the WAM and PWAM instruction sets are not necessary. These

architectures are reviewed in the Chapter 2, although the interested reader is referred to

Warren[Warren 83a] and Hermenegildo[Hermenegildo 87a], respectively, for

complete details.

The body of this dissertation contains four parts. The first part, Chapter 2, describes a

family of Prolog architectures defined from the principles of canonical high-level

language architectures. Prolog Canonical Interpretive Forms (CIFs) are introduced

which have attributes with certain "ideal" qualities not present in the WAM. The WAM

is introduced from a historical perspective of DEC-10 Prolog and its variants. PWAM,

chosen for later multiprocessor performance measurements, is also reviewed.

Chapter 3 presents the tools and benchmarks used to make empirical measurements of

memory models introduced in Chapter 4. The WAM, Prolog CIFs, and PWAM

memory-referencing characteristics are presented and compared.

Chapter 4 presents two-level memory hierarchies well-suited for sequential Prolog

architectures. Local memory models are described and measurements are presented.

The local memory designs are generalized into parameterized queueing models for main

memory design. These models are evaluated, giving the bandwidth efficiency of both

the main memory and the memory bus, and the expected processor performance

degradation due to the local memory miss penalties, aggravated by main memory

contrition.

Chapter 5 presents memory hierarchies well-suited for parallel Prolog architectures,

15

specificallyPWAM. Sharedmemorymultiprocessorconsistencyproblemsfor PWAM
areoutlinedand local memorymodelsarepresentedwhich solvetheseproblems. The
queueing models previously introduced are extended to describe shared memory
multiprocessors.

Finally, Chapter6 presentsconclusionsdrawnfrom theresearchandpointsto directions
for futureresearch.

16

17

' Chapter 2

Prolog Architectures

This chapter describes a family of high-level instruction set architectures for the Prolog

language. The Prolog architecture family is canonical, i.e., it is defined from the

semantics of Prolog in the tradition of F'lynn and Hoevel's work on canonical

architectures for procedural languages [Flynn 84]. The most notable member of the

Prolog architecture family is the Warren Abstract Machine ONAM) architecture

[Warren 83a], currently implemented on general purpose hosts via native-code (e.g.,

Tricia [Carlsson 86]), interpretation (e.g., Quintus Prolog [Quintus 86]), microcoded

interpretation (e.g., on the VAX 8600 [Gee 87]), and on dedicated hosts (e.g., the UC

Berkeley Programmed Logic Machine (PLM)[Dobry 85] and the ICOT PSI-II

[Nakashima 87]).

The canonical Prolog architecture family includes attributes such as ideal indexing (a

model for directly selecting the correct procedure entry point in a nondeterministic

procedure invocation) and tight instruction encoding. Although not all of these

attributes are realizable, they indicate upper bounds on sequential execution

performance. In addition, they can be used constructively to aid in the design of

realizable architectures on current hosts. It is shown that the WAM is such an

architecture, i.e., the WAM instruction set closely corresponds to the Prolog source

language. Results are presented indicating the extent to which the WAM achieves the

canonical measures.

An alternative introduction to the WAM architecture is also presented by means of its

historical ancestor, the DEC-10 Prolog abstract machine (Prolog-10)[Warren 77].

These two architectures are compared in the area of memory performance. Evidence is

presented suggesting that the WAM achieves its goal of optimizing the execution of

determinate code (with respect to Prolog-10), at the cost of slower nondeterminate

execution. The performance difference (in terms of memory references made) is

greatest for shallow backtracking programs.

18 °

Finally, an overview of the Restricted AND-Parallel Prolog architecture (PWAM)

[I-Iermenegildo 87a] is given. In the next chapter, memory-referencing characteristics

of these architectures are presented and the relative merits of their attributes are

compared.

J

2.1. Canonical Prolog Architectures

In this section, terminology is introduced with which canonical Prolog architectures are

def'med. These architectures arc informally called Prolog canonical interpretive forms

(CIFs). The importance of studying these architecturesis then given. Metrics for

measuring the characteristicsof CIFs arc introduced. Detailed definitionsof the CIF

architecturesand metricsarc given in subsequent partsof thissection.

A (sequential) machine, used to execute a program (i.e., a set of instructions), is defined

as the combination of an interpretive mechanism and a store. The machine is called the

image machine or abstract machine model. The store or image store is often called the

storage model. The interpretive mechanism is often called the execution model and can

be implemented with another machine, called the host machine. Architecture, as

defined in this dissertation, is the image machine instruction set semantics, i.e., how the

interpretive mechanism updates the image store during program execution.

The name space of the architecture is the set of (data and instruction) objects that can be

referenced by the instruction set. Prolog data objects are described in Section 1.3. Each

data object is given a name or identifier in the source program. Recall that in a Prolog

program, variable names are capitalized, and thus easily distxr_guishable from constants.

The (lexical) scope of an identifier is the largest program segment over which the

identifier has a consistent definition. The scope of a constant identifier is the entire

program. The scope of a variable identifier is only a single clause. In a one-level name

space, as defined in this dissertation, instructions can only reference identifiers whose

scope is visible from the currently executing clause. In a two-level name space,

instructions can also reference identifiers from a register set.

A Prolog canonical interpretive form (CIF) is the measure of Prolog program events

which limit a machine architecture. Alternatively, a Prolog CIF is a high-level

architecture directly corresponding to Prolog. Flynn and Hoevel [Flynn 79] developed

the theory of canonical architectures and applied it to procedural languages such as

FOR_ and Pascal (CIFs developed for these languages are referred to as

procedural CIFs in this dissertation). The CIF models assume Von Neumann hosts

19

where the memory bandwidth between the processorand memory is the primary
performancebottleneck. Other types of hosts, e.g., dataflow machines,are not
considered.

A two-phaseevaluationmodel is assumedhere,as in k'lynn andHoevel[Flynn 84]. In
the first phase,theProlog sourceprogramis translated into an intermediate form, the

Prolog CIF, with a compiler. In the second phase, the Prolog CIF is interpreted by the

host. The purpose of defining a Prolog CIF is three-fold.

• The CIF execution performance gives the best case program performance

because memory referencing is minimal and stability (lack of disruption of
sequential interpretation, e.g., taken branches) is maximal. The CIF is ideal

only in the sense that the CIF corresponds closely to the source program, so
that the CIF does not limit the source program performance. Given a direct

correspondence, source-to-source compiler optimizations (not investigated

here) can improve upon the CIF performance.

• The CIF attributes, although not totally realiiable, can be used

constructively to implement high-performance architectures. Flynn and
Hoevel have termed these architectures direct correspondence

architectures (DCAs).

• The description of the Prolog CIF can be viewed as an exposition and

justification of the WAM model [Warren 83a]. 1 The WAM is considered a

Prolog DCA.

Flynn and Hoevel define five design criteria for a canonical architecture ['F:lynn 79]:

1. transparency (1:1 rule) m the source and CIF correspond closely to one
another.

2. size m the CIF data and instruction objects are as concise as possible.

3. referencing _ a minimal number of objects are interpreted.

4. stability _ there is minimal disruption of sequential interpretation.

5. distance m a minimal number of unique objects are interpreted.

Each criteria defines a measure that must be optimized to attain the CIF. The optimality

of these measures cannot be guaranteed for all programs written in the source language.

For instance, given knowledge of a program, an object encoding may be developed

requiring less space than the CIF (which is designed without specific knowledge of the

program). The variance in CIF attribute optimality is greater for Prolog than for

1For mother method of justifying the WAM, see Kursawe [Kursawe 86"].

20

procedural CIFs becausethe use of dynamic data structures and nondeterminate

execution is highly program dependent in Prolog.

The f'trst two criteria comprise the static measures of an architecture. The last three

criteria comprise the dynamic activity measures of an architecture. The dynamic

measures are meant to reflect execution performance on three classes of machine: low

end, high end, and confluent (unlimited hardware). Distance is not discussed here.

In the following sections three CIF models are described in terms of the CIF metrics

above. Measurements of the memory-referencing characteristics of these models are

presented in the next chapter. The f'n'st two CIFs, which are identical in construction,

are called the naive and traditional CIFs. They are informally derived in a manner

similar to the formal derivations of [Flynn 84] and correspond closely to Prolog. The

naive model is inefficient because a memory reference is required for each identifier

referenced in the program. The traditional CIF's data traffic is analyzed _summg a

more sophisticated host. In this case, a memory reference is no longer required for a

reference to an identifier in the current scope. With the new analysis, the traditional

model performs significantly better than the naive model, reducing data references by

about 79%, but the underlying assumptions are shown to be costly to implement for

Prolog. A register-based CIF is then described, incorporating a two-level name space.

Under the assumptions of a less costly host, the register-based CIF performs reasonably

well, reducing the naive CIF data bandwidth by about 14%.

2.1.1. CIF Data Encoding

In this section, the encoding of data objects used in the CIF architectures is described.

The data objects manipulated by the Prolog CIF correspond directly to the objects

manipulated by a Prolog source program. CIF data objects are encoded to correspond

to the requirements of large Prolog applications programs executing on typical hosts.

These programs reference many unique atoms, and a large number of data objects. Data

objects or terms are composed of words, the indivisible unit of image storage. A word

has a tag and a value, i.e., the CIF is a tagged architecture. Tags are necessary to

dynamically distinguish between different types of data objects in order to implement

unification, the fundamental Prolog operation.

A simple term (constant or variable) occupies a single word. An indirect reference or

pointer to a term also occupies a single word. The indirect reference type is necessary

to implement shared Prolog variables. An unbound variable is defined as an indirect

91

reference to itself. This allows creation of a reference to an unbound variable by simply

copying (verbatim) that value to another location. Although the CIF def'mition does not

constrain the word size, the measurements made in this dissertation assume a 32 bit

word to facilitate comparison between the CIF and the WAM. The 32 bit words permit

a large number of unique atoms and a large number data objects in the Prolog image

store.

Complex terms (structures and lists) cannot be encoded in a single word. As a result,

when binding a variable to a complex term, an indirect reference is required, pointing

from the variable to the term. To speed up unification of complex terms, indirect

references to complex terms are given tags indicating the type of the complex term.

Specifically, a structure is encoded as an indirect structure reference to a functor word,

followed by a single word for each argument (lists are described below). Note that a

single word is allocated for each structure argument. For a s'tmple structure (with

simple terms as arguments), this is sufficient. A structure which is composed of

structures uses indirect references to link complex arguments to encompassing

structures. Note that indirect references to simple terms and to other indirect references

do not indicate the type of the dereferenced value. This facilitates binding a variable

because pointers to the variable do not have to be updated to indicate the variable's new

value type.

A list is a special type of structure with two arguments. Lists are encoded as an indirect

list reference directly to the head of the list. The subsequent location is the tail of the

list. In a legal list, the tail is either another list reference or the constant nil signifying

the end of list. Lists are not cdr-coded in the Prolog CIF to reduce the complexity of the

architecture. Preliminary measurements indicated that cdr-coding saved an insignificant

number of memory references for the benchmarks studied in this dissertation.

2.1.2. Naive and Traditional Prolog CIFs

In this sectio.n, a traditional Prolog CIF is defined from the semantics of Prolog. The

CIF is called "traditional" because it is largely based on the procedural language CIFs of

Flynn, in contrast to the "register-based" CIF introduced in Section 2.1.3. The naive

CIF is identical to the traditional CIF with the exception of the underlying host

assumptions. These differences are discussed in Section 2.1.2.3. A Prolog CIF consists

of an instruction set and its corresponding semantics with respect to a storage model.

The following sections define the traditional CIF storage model and the instruction set.

22

The traditional model is instructive because it corresponds closely to Prolog and

clarifies the later description of the register-based CIF.

2.1.2.1. CIF Storage Model

In this section, the traditional Prolog CIF storage model is defined. The storage model

corresponds directly to the storage constraints imposed by Prolog semantics. It is

argued that the storage model is "ideal" in the sense that it does not constrain reasonable

host implementations. An overview of the CIF storage model is illustrated in Figure

2-1. The model is a variant of the three-stack model introduced in DEC-10 Prolog

['Warren 77]. The code space is a static area holding the CIF program. The heap,

stack, and trail are dynamic areas managed in stack-like manners. The thick arrows in

Figure 2-1 represent typical indirect data references. The thin arrows represent typical

management pointers. Only the most important connections from one area to another

are shown. These connections and the individual areas are described below.

C
HEAP ENV

STACK

i i iili
. ,,.7,.

TRAIL

j..---

CODE

Figure 2-1: Traditional Prolog CIF Storage Model

The storage model is centered around the frame (this notation is retained from the

DEC-10 Prolog architecture) which holds all identifiers referenced within a scope. The

frame is similar to a contour in procedural CIFs. A Pascal contour, for instance,

contains labels, constants, local variables, pointers to non-local variables, pointers to

global variables, and arguments passed to the procedure [Wakefield 82]. A single-level

23

name spaceis used,wherein the instruction set referencesall objects via contour
indices. This minimizes operandsize, therebyminimizing instruction size. Unlike
procedurallanguages,therearenonon-localor globalobjectsin Prolog,sothesearenot
presentin the frame. In addition,Prologdoesnot referencelabelsand constantsin a
clausemultiple times, mainly becauserecursionis used insteadof iteration. These
objects are directly encodedin the instruction streamas immediateoperands. The
remaining objects in a frame, collectively referred to as frame variables, are local

variables, and arguments passed to the procedure. In addition, the traditional Prolog

C_ frame also contains state information necessary to implement nondeterminate

procedure execution.

Nondeterminate control flow or backtracking in Prolog is the action of selecting the

most recent entry point with alternatives for a procedure invocation, restoring the state

of the computation at that point and resuming execution there. Abstractly, the

alternatives are called branch points because they represent OR-branches in the AND-

OR tree representing the Prolog proof. 2 A unique frame is created for each procedure

invocation. If a branch point is reached, the frame is loaded with additional state values

necessary for nondeterminate program execution. A possible opti_rfization avoids

allocating space for these values in the frame until it is known if the procedure

invocation is a branch point. This optimization is not of concern in the traditional CIF,

because CIF memory characteristics are measured in numbers of references, not

locality.

Since clauses may be nested, multiple clauses may be active during program execution,

and therefore multiple frames must be managed. A frame stack is utilized, similar to a

contour stack in a procedural CIF. Thus the traditional Prolog CIF is similar to the

DEC-10 Prolog abstract machine. Unlike a procedural CIF, a heap is also utilized, as

described below.

A frame variable is allocated only a single word. Binding a frame variable to a new

structure (or list) is implemented by creating the structure on the heap and indirectly

referencing the structure from the frame. On the heap, objects live until removed by

failure (this is a simple view of the heap that avoids the issue of garbage collection but

is sufficient for the purposes of this dissertation). Splitting the allocation of simple and

complex objects onto the stack and heap is necessary because the space required by a

2See Kowalski [Kowalski 79] for a discussion of the AND-OR tree.

24

scope for complex objects cannot be determined at translation time. Consider a variable

in a clause which may be passed through arbitrary levels of procedure calls until it is

bound to a structure. Which structure cannot be determined statically, so the variable's

frame size cannot be calculated. Instead, these "excess" objects are dynamically

allocated on the heap.

The two essentialcontrolfunctionsof nondeterminatc execution in Prolog are failand

cut. Therefore the CIF storagemodel must permit theirefficientimplementation, i.e.,

minimal memory referencing,maximum storagereclamation (maximum locality),and

fast execution. With this motivation, the Prolog CIF nondeterminatc execution

mechanism isnow described and itscorresponding storagemodel isshown to facilitate

efficientfailand cut. Restoring theoriginalstateof thecomputation ingeneralinvolves

the following:

• restoring the frames active at the most recent branch point.

• unbinding the values of variables bound since the most recent branch point.

• restoring state variables (e.g., stack pointers, etc.).

All frames in the stack corresponding to threads of cxccution'lcading to an active

branch point must be saved until that procedure fails or succeeds unconditionally, i.e.,

until no alternative clauses exist for that procedure. Viewed as ah AND-OR tree, all

frames on a path leading from the root to an active OR-node must be saved. The most

efficient method of implementing this is to freeze the stack (and heap) at each branch

point, i.e., disallow deallocation of these frames. Failure is permitted to unfreeze the

stack, discarding the portions of the stack and heap more recent _an the last branch

p:>mt. To implement this efficiently, the frames corresponding to branch points (c,dled

branch pointfrarnes) are connected in a chain.

To efficiently implement the task of unbinding variables during failure, the address of

each variable bound since the branch point must be saved. Since the number of such

bindings is unknown at translation time, the trail addresses cannot be allocated within

the frame. Alternatively, the trail addresses could be allocated on the stack as linked

objects, independent of the frames. However, it is far more efficient to store trail

addresses on a separate last-in/fast-out (LIFO) stack, called the trail stack. The action

of saving an address on the trail stack is called trailing a binding. The trail stack also

permits efficient implementation of cut. Cut, like failure, manages the AND-OR tree.

Cut removes zero or more active branch point frames, allowing subsequent

backtracking to avoid executing OR branches that do not produce useful solutions. Cut

25 .

can also have the side-effect of deallocating stack frames. Cut, however, cannot

deallocate trailed addresses, which must be saved and detrailed (the locations to which

the addresses point must be unbound, i.e., set to unbound variables) during the next

failure.

I

2.1.2.2. CIF Instruction Encoding

This section describes the traditional Prolog CIF instruction set and encoding methods.

CIF instruction and operand names arc borrowed from the WAM [Warren 83a] to avoid

obscuring the similarities between the two. A mapping for algorithmic/scientific

languages involves arithmetic operators and variables within an assignment statement.

In Prolog, the basic semantic operation is unification of a source level argument with

simple terms as operands.

For example, consider append/3, which can be used to append two lists:

append([],X,X) .

append([XlL1],L2, [XlL3]) :- append(Li,L2,L3) .

The first clause means that the result of concatenating a list, X, to the constant nil, [], is

list x. The f'_rst clause is a simple example that introduces many of the correspondence

subtleties. Since there are three source level arguments, three unification operators are

expected. Each operator is a specialized form of general unification. 3 For example, to

match the fast argument, the specialized unification operator simply checks that the

incoming argument is either unbound or nil. If unbound, it is bound to nil. Other types

of incoming arguments cause the operation to fail. The second operator is specialized

to match an unbound local variable, so it cannot fail. In fact, matching the second

argument, in this case, requires no work (which is understood at the higher level of the

declarative semantics).

Matching the third argument translates into a single operator; however, the operation

entails an unknown (at translation time) amount of work, i.e., operand fetches. Shared

variables can possibly cause additional operands to be referenced from memory when

the variables are dynamically bound to compound terms and require general unification

for matching. Thus an accurate operand count cannot be ascertained from the static

3See Lloyd ['Lloyd 84] or Robinson [Robinson 79] for general unification algorithms. See Tick [Tick
87a] for the unification algorithm used for the measurements presented in this dissertation.

26

code (c.f.,procedural CIFs, where operator and opcrand counts can be statically

determined). The following query exhibitsthistype of behavior -- the thirdoperator

matches the firstfour elements of thelistsbeforefailure.

?- append([], [1,2,3,4], [1,2,3,4,5]).
J

The Prolog ClF translates the unification of simple terms and one-level structures into

one instruction. Unifying a nested structure always requires one or more additional

instructions.A clausehead ismatched using get instructionsand the body goals are set

up using put instructions.In the next paragraphs the syntacticstructureof get and put

instructionsisdescribedand the informal semanticsaxe then given.

The get instructions axe ctmposed of a source operand followed by at least one

destination operand. The put instructions arc composed of a destination operand

followed by at leastone source operand. Both sources and destinationsare frame

variables,encoded as indicesintothe currentframe.

The get destinations and put sources axe tagged. These tags indicate the format of the

operand. In the case of get instructions with a single destination (put: single source),

the format can be incorporated into the opcode (as in the WAM). In the case of

multiple destinations (put: multiple sources), the formats are separated from the opcode

because each operand can have a different format. The operands must be processed

sequentially, from left to right, for correctness because the compiler may introduce

dependencies between the operands.

In general, get instructions match their source operand to their dc_,tination operand(s).

Destination operands may be tagged as vat, val, or const. A get instruction first checks

the destination format. If vat, it assigns the source to the destination. If const, the

source is compared to the destination. If val, the source is unified with the destination. 4

If the comparison or unification fails, the instruction fails, i.e., the failure routine is

invoked.

In additionto the get instructionsis get_stct (get_list issimply an optimized

instanceof get_stct). Unlike the previouslydiscussedget instructions,get_stct

takes a variablenumbcr of staticoperands. Ifthe source is unbound, the opcrands arc

4Prolog unification does not perform an "occurs check," thus a circular term (i.e., a term that references
itself) can cause an instruction to make an unlimited number of operand requests.

27

interpreted in write mode. If the source is a structure, the operands are interpreted in

read mode. Otherwise the instruction fails. The source is matched to the first

destination operand, which is a functor. Then arguments of the source structure are

matched to the succeeding destination operands. Matching in write mode involves

assignment to the heap. Matching in read mode involves comparison of terms.

In general, put instructions assign their source operand(s) to their destination operand.

Source operands may be tagged as vat, val, const, or unsafe. The val and eonst

operands are assigned to the destination. An unsafe source operand must be moved

onto the heap before assignment to the destination, to allow last call optimization

(described be!ow). A var source operand must flu'st be initialized to an unbound

variable in the frame before assignment to the destination. This allows an optimization

wherein the frame is not initialized when allocated.

Some examples of CIF code are given in Figure 2-2. Yi and Zi represent caller and

callee frame variables, respectively, at index i. It is assumed that Zi can be referenced

with an offset from the top of stack. In contrast to a procedural CIF, the Prolog CIF

relies heavily on the optimization of removing no-operations (e.g., get Y1, war (Y1)

and put Y0, val (Y0) -- these are marked in Figure 2-2 with "%").

Various control instructions are present in Figure 2-2. The call instruction is used to

invoke a procedure, after the caller loads the passed arguments on the top of stack.

Note that the top of stack is defined as the more recent of the current frame and the

current branch point frame. The callee allocates a frame over the arguments passed

from the caller. A large enough frame is allocated to contain the maximum number of

frame variables in all clauses possibly matching a nondeterminate procedure invocation.

Figure 2-2 shows only clause code, and therefore frame allocation instructions are not

given. Note that a nondeterminate callee loads state information into the frame during

allocation. As previously stated, these branch point frames are linked to efficiently

implement fail and cut.

The proceed instruction causes simple procedure return. The execute instruction

returns through a procedure call. A nondeterminate procedure resets its branch point

frame to a standkrd frame when its last alternative clause is entered. This facilitates

frame deal.location. The proceed deallocates the procedure's frame if it is a standard

frame on the top of stack. This deallocation is performed by resetting the current frame

to be that of the immediate ancestor of the procedure (its caller). Because the

execute first invokes another procedure before it returns, the current frame is reused,

not deallocated, as is explained below.

28

append ([], X, X) .

get

% get

get

proceed

Y0, const ([])

Y1, var (Y1)

Y2, val (YI)

append ([X lL1], L2,

get_li st

% get

get_list

% put

% put

% put

execute

[XIL3]) :- append(LI,L2,L3).

Y0, var (Y3) ,var (Y0)

YI, vat (YI)

Y2, val (Y3), vat (Y2)

Y0, val (Y0)

Y1, val (Y1)

Y2, val (Y2)

append/3

foo (f (a,b, g (X)) ,X)

% get

get_stct

get_stct

put_stct

put_stct
execute

:- bingo (f (a, X, Y, g (Y))) .

Y1, var (YI)

Y0, f/3, const (a) ,const (b) ,var (Y2)

Y2, g/l, val (Y1)

Y0, f/4, const (a) ,val (YI) ,var (YI) ,var (Y2)

Y2, g/l, val (YI)

bingo/l

qsort([XlL],R0,R) :- split(L,X, LI,L2),

qsort (LI, R0, [XIRI]), qsort (L2, RI, R) .

get_list Y0, vat (Y6) ,var (Z0)

put Zl, val (Y6)

put Z2, vat (Y5)

put Z 3, vat {Y3)

call split/4

put Z0, unsafe (Y5)

put Zl, val (YI)

put_list Z2, val (Y6), vat (Y4)

call qsort/3

put Y0, unsafe (Y3)

put Yl, val (Y4)

put Y2, val (Y2)

execute qsort/3

Figure 2-2: Traditional Prolog CIF Clause Examples

29

Last call optimization, also known as tail recursion optimization ('f'RO), reuses the

current frame (if it is at the top of stack) for the last goal of a clause. The first use of

TRO for Prolog was in DEC-10 Prolog [Warren 80] and is considered essential for the

CIF because of Prolog's reliance on recursion instead of iteration. Procedural CIFs do

not implement TRO because the languages do not rely on recursion. Huck ['Huck

83] reports that typical FORTRAN programs execute on average 290 VAX-11/780

instructions between procedure calls. In this dissertation it is found that on average,

Prolog executes 15.3 (WAN[) instructions between procedure calls (Section 3.2). TRO

is necessary to increase frame referencing (spatial) locality. Spatial locality is a

measure of the locus of memory references within the storage model. High locality

implies that the storage areas do not grow and shrink rapidly. This type of behavior can

be exploited by small (inexpensive) hardware buffers that capture a large percentage of

all memory references. Such buffers reduce the effective memory access time thereby

improving processor performance. The greater the locality, the greater the buffer cost-

efficiency.

TRO is implemented in the CIF by passing arguments directly over the caller's

arguments via Y operands if the caller's frame is at the top of stack. Abstractly, this

amounts to deallocating the frame of the current scope just before invoking the last goal

of that procedure. To avoid leaving references pointing into the old frame, frame

variables thus referenced (i.e., unsafe operands) are copied onto the heap before

dea.Uocation.

Procedural CIFs as defined by Flynn and Hoevel [Flynn 84], require that objects and

actions at the architecture level correspond to objects and actions at the language level.

This requirement ensures that the CIF uses no more storage space or interpretation time -

than described by the source program. The languages to which this concept was

originally applied are much lower-level languages than Prolog. Attributes of these

languages are closely related to host machine functionality, e.g., the FORTRAN

addition operator and its correspondence to an ALU add function.

This view of translation requires transparency between source and object, where the

only optimizations allowed are at the source level. For a simple language, such as

FORTRAN, this view is logical -- transparency can reduce computation complexity

and increase reliability. A complex language such as Prolog, however, does not have

the same strong notion of sequentiality of instructions as does FORTRAN. During

resolution, head arguments can be matched in any order, and when matching an

argument which is a complex term, subterms can be matched in any order. Thus the

3O

traditional view of transparency, a direct map between source-level and host-level state

transitions, is unmotivated and restrictive for Prolog. It is for this mason that the order

of the Prolog CIF instructions in Figure 2-2 does not always correspond directly to the

source prbgrams.

For the Prolog CIF, a tightinstructionencoding is assumed. This includes variable

lengthinstructionson bitboundaries. Local branch targetsare encoded intoeitherone

or two bytes,assuming a sophisticatedlinkercapable of determining minimal offsets.

Frame variable specifiersare log2 encoded (theseattributesarc furtherdescribed and

measurements are presented in Sections 3.3.2and 3.4). Figure 2-3 gives an example of

CIF encoding for the inner-loopof append/3, in bits.A WAM byte-encoding,using

similaroffsetsizes,requires15 bytes,an 88% increaseinsize.

get list YO,var(Y3),var(YO)

get_list Y2, val (Y3) ,var (Y2)

execute append/3

operands

opcode re_ tag offset total
8 6 6 26

8 6 6 26

8 16 24

24 12 12 16 64 bits

Figure 2-3: CIF InstructionEncoding (bits)-- append/3Clause2

2.1.2.3. CIF Data Referencing

In thissectionthe CIF data referencingmetrics are discussed. The interpretationof

these metrics isdependent on th_ ,._nderlyinghost assumed. Two hosts are illastratcd

here -- a simple host which holds the image .storeentirelyin memory (the naive

model), and a complex host which holds the frame stack in fastmemory and the

remainder of the image store in memory (the traditionalmodel). Additional CIF

metrics,not dependent on host,arc discussedinSection 2.1.4.

Prolog data references fall into the following main categories: dercferencing terms,

unifying terms, (un)binding (i.e., binding and unbinding) variables, (de)trailing (i.e.,

trailing and detrailing) bindings, and (preparing for) backtracking. Except for binding a

variable, analogous to assignment, none of these are common in traditional procedural

languages. Dcreferencing, backtracking, and its preparation are discussed in the next

section. The remaining types of references are discussed in this sectibn. These

represent the core Prolog operations of passing arguments and binding results.

31

Using the translation method described in the last section, references made while

unifying terms correspond closely to the source language specification. In contrast to a

procedural language, however, the Prolog specification is incomplete, thus minimaliry

of referencing cannot be guaranteed. The nature of dynamic sa'ucturc creation prevents

de_rminadon (at translation rime) of a minimal referencing method. For instance,

using structure copying (as in the WAM and adopted in the CIF), new structures are

createzt by copying pre-existing structures verbatim. Using structure sharing (as in

DEC-10 Prolog), new sa'ucturcs are created by reusing the skeleton of pre.¢xis_.ng

structures, copying only variable clara. The efficiency of each scheme is dependent on

the amount and t71_ of structure creation and access in the program, because although

structure sharing saves copying static parts of a structure, it requires indirection in

accessing variable pans of a s_ucture (see Mellish [Mcllish 82] for discussion).

read write

append(

[X]LI], 3 2

L2,

[XIL3]) "- 3 4

append(

LI,

Figure 2-4:

L2,

L3) .

Traditional CIF Data Referencing (words) - append/3

One method of analyzing the CIF is to simply count a memory reference for each

identifier reference in the current scope. Manipulation of structures or lists involves

extra references, as described below. This metric specifies precisely the memory traffic

implied by the source program making no assumptions about the underlying host. An

example of this referencing metric for the inner-loop of determinate execution of

append/3 is shown in Figure 2-4, assuming a query such as

? - append([l,2,3,4], [5,6],X).

Simple operators, e.g., unification of L2, do not require instructions, because the no-

operations are removed by the translator. During determinate execution the first

argument is instantiated and the third argument is uninstantiated. One memory read is

needed to access the first argument from the frame and check if it is a list. Two

memory transfers, each consisting of a read and write, are needed to load the head and

32

tailfrom the heap intothe frame variablesfor x and LI. Two reads are needed to

accessthe thirdargument from the frame and dereferenceit.A wrim isneeded to bind

the thirdargument to a list.A memory transferisneeded toload x intothe head of the

list.Two writesare needed to load the tailof the listand a pointerto the tailintothe

frame variablefor L3.

This example shows that referencing requirements are directly specified by the

program, given knowledge of the argument modes. An argument mode indicates

whether the passed argument is always bound, unbound, or possibly either. Complete

knowledge of the argument structure is needed to calculate referencing in a procedure

clause containing shared variables. A shared variable is a multiple occurrence of a

variable name in the same scope. In the case of append/3 in Figure 2-4, X is a shared

variable. The modes assumed for determinate execution indicate that the variable is

being copied from the lust argument to the third argument, therefore complete

knowledge of the structure of X is not needed to determine the number of references. If

however, the modes indicate that the Rrst and third arguments are both bound,

knowledge of the structure of x (i.e., is it a tree, an integer, etc.?) is necessary.

Note that the binding of the third argument in append/3 is not trailed because

append/3 is clearly a determinate program. In general, the amount of trailing is

impossible to determine statically from the source program at translation time. One

could trail all bindings, but this is rarely necessary. The problem of determining the

minimum amount of necessary trailing is addressed in the next section.

An alternative memory-referencing metric, more in keeping with procedural CIFs,

counts a memory reference for each ininal reference to a unique identifier in the current

scope. This metric assumes an underlying host that can capture subsequent references,

e.g., a frame stack buffer of unlimited size. An unlimited heap buffer is not considered

because the heap exhibits significantly less locality than the stack, making such an

assumption less appropriate. An unlimited trail buffer is not considered, although it

could be, because trailing does not significantly contribute to memory referencing.

Recall that a CIF frame holds arguments passed to the procedure and local variables.

Since neither of these objects requires initialization (e.g., from a skeletal contour, as in

[Wakefield 82, Alpert 84]), the alternative referencing metric results in no memory

references for accessing the stack. Note however that the Prolog storage model also

consists of a heap and trail. References to these areas (about 25% of all data references

in typicalprograms) must be counted.

33

append (

[X[LI],

append (

LI,

Figure 2-5:

L2,

[XIL3]) :-

read write

0 2

1 3

L2,

L3).

Alt, rnadve CIF Data Referencing (words) - append/3

The append/3 example is re-analyzed in Figure 2-5. Here the alternative metric is

calculated, resulting in six memory references as compared to 12 references in Figure

2-4. Figure. 2-5 simply discounts all references to frame variables in Figure 2-4.

Measurements of both the naive CIF and traditional CIF data referencing metrics for

large Prolog benchmarks are presented in Section 3.4.

2.1.3. Register-Based CIF

A register-based Prolog CIF is defined ih this section. This CIF differs from the

traditional model in that it has a two-level name space, leading to the separation of

frames into environments and choice points. In this section, justifications for

constraining the traditional CIF in this manner are given. In subsequent sections, the

two-level name space, register allocation scheme, storage model, and instruction set are

described.

The traditional Prolog CIF previously defined makes no memory references when

referencing the stack. This measurement assumes a host with a stack buffer of

unlimited size. Measurements presented in Chapter 4 indicate that for typical Prolog

programs on the WAM architecture, which has excellent stack locality, a 256 word

suck buffer reduces memory traffic by about 75%. Almost all of the remaining traffic

is due to heap and trail references not captured in the buffer. In fact, the traditional

Prolog CIF will almost certainly have inferior locality compared to the WAM, as is

discussed in detail in the remainder of this section. These results indicate that a costly

host (i.e., a host with a fast local memory of substantial size) is necessary to achieve the

traditional CIF. For instance, a real host might use a non-architected cache (i.e., a local

memory below the level of the architecture).

34

Recali that the Prolog CIF is an architecture that does not limit the execution of Prolog

programs on sufficiently powerful hosts. Consider three types of host. In the fhst host a

small registei" set is implemented, but no stack buffer or cache. In this case, the

traditional CIF cannot be achieved and a register-based architecture will perform better.

In the second host, a stack buffer is implemented, so that the traditional CIF can be

achieved. In this case, the traditional CIF is the best architecture if the buffer is large

enough. In the third host, a general cache is implemented, so that the traditional CIF is

achieved, but at significant cost. At comparatively little extra cost, a small, relatively

faster register set can be implemented. Again, a register-based architecture will be

advantageous.

Note that the fhst and third hosts have identical architectures because the cache is not

explicitly referenced in the instruction set. Considering architectures for these hosts, it

is beneficial to constrain the traditional CIF. The register-based Prolog CIF is such a

model, assuming a host wi_ only a small register set.

2.1.3.1. Two-level Name Space

A two-level name space is used in the register-based Prolog CIF. The first level is

composed of registers; the second level is an environment. Informally, an environment

holds local variables of a clause, similar to a frame in the traditional CIF model. A

more precise definition is given later in this section.

The register set as defined in this model is a group of words, one per register, that is

addressed with an index. The major premise is that a host can offer faster access to an

object stored in a register than to an object stored in an environment. In other words,

the register-based Prolog CIF restricts the traditional CIF from assuming a host with a

stack buffer of significant size to the more modest assumption of a single, small register

set. When calculating the memory traffic for the register-based CIF, memory references

are counted for all stack references, but not for register references.

Each unique variable in a clause (scope) is allocated either to the register space or

environment space. These are called temporary and permanent variables respectively in

order to retain the accepted nomenclature as introduced by Warren [Warren 83a]. A

temporary variable is defined informally as a variable which occurs in at most one

chunk, where the head is considered pan of the first chunk [Debray 85]. A chunk is a

possibly empty sequence of safe goals followed by an unsafe goal. A safe goal is a

built-in goal that does not modify the argument registers. An unsafe goal is a goal

which is not safe. A permanent variable is a variable which is not temporary.

35

Although itisdesirableto place allvariablesinregisters,the definitionof a temporary

variablehas been restricted.A simple compiler cannot determine whether a temporary

variable will survive through a user-defined goal invocation (procedure call),i.e.,

whether a given registerwill bc modified by the callce. Inexpensive and therefore

simple registcrallocatorsare assumed here. Thus a variablewhose lifetimeextends

beyond one chunk iscategorizedas pcrrnancnt.

The singleregistersetisshared by allclausesin the program. For each procedure call,

arguments arc passed through the registers. For very tightrecursive loops (e.g.,

append/3) TRO operatesentirelyfrom the registerset and no environments nccd bc

allocated.There are alsodisadvantages to using registers.For instance,a callermay

pass some arguments to a callcethrough the registers.The callceallocatesa subset of

the arguments as permanent variablesand must subsequently move them into its

environment. Ifthisrcgistcr-to-mcmorytransferisverbatim,i.e.,no usefulunification

is performed, thcn it is purely an artifactof the register-basedarchitecture. This

overhead isavoided in the traditionalProlog CIF.

ENV CP

STACKiiiiiiii i!iiii!ii!iii

TRAIL

CODE

Figure2-6: Regismr-bascdPrologCIF StorageModel

The new storage model, illustrated in Figure 2-6, is similar to that of the traditional

Prolog CIF (Figure 2-1). The thick arrows in Figure 2-6 represent typical indirect data

references. The thin arrows represent typical management pointers. Only the most

important connections from one area to another are shown. These connections and the

36

individual areas axe described below. The major difference between the traditional and

register-based storage models is that the latter splits a frame into an environment and

choice point, allowing separate stacks for these objects. Figure 2-6 illustrates such a

model.

Since arguments are passed through registers, there is no need to allocate arguments in

an environment belonging to a determinate procedure. Instead, choice points and

environments can be defined as independent objects. A choice point holds the

arguments passed to a nondeterminate procedure and the state register values (so that

these values can be restored upon failure). In addition, clauses composed of a single

chunk do not have any permanent variables, and therefore do not require an

environment.

In the traditional Prolog CIF, a frame is created for each procedure invocation. In the

register-based CIF, an environment is created for each clause invocation, when

necessary. A choice point is created for each nondeterminate procedure invocation.

Since there may be multiple branch points active at any one time during program

execution, multiple choice points must be managed. The most efficient manner of

managing the choice points is in a LIFO stack. Informally, failure restores the current

(top) choice point.

Choice points can be allocated either on the environment stack (as in the WAM), or on

a separate choice point stack. In either case, a choice point must freeze all previously

allocated environments to allow failure to properly restore them. If choice points are

ali,.,cated on We environment stack, c,:, can be ir,._,lemented wlt_J relau,,_ efficiency, b_tt

because environments must not be removed by cut, cut is less effective in pruning the

stack and thereby improving locality. Similarly, if choice points are allocated on the

heap, cut cannot be efficiently implemented. If not for cut, failure would be the only

operation managing these areas, and either a choice-point/trail-stack or choice-

point/heap combination would be advantageous.

If a choice point stack is used in addition to the environment stack, managing the

separate stacks requires additional memory references, but greater locality is attained.

These tradeoffs are quantified in the next chapters. In addition, trail addresses could be

allocated on the choice point stack. A separate trail stack is more efficient, however,

because the choice points are manipulated not only for failure, but also for cut. Unlike

failure, cut does not restore the computation at the selected choice point. Therefore cut

must not prune the trail (or heap or stack). If trailed addresses are stored on the choice

point stack, cut cannot be implemented to reclaim the maximum amount of stack space.

37

2.1.3.2. Instruction Encoding

This section describes the register-based Prolog CIF instruction set and encoding

methods. The register-based instruction set is similar to the traditional Prolog CIF

instruction set. The major difference is the pervasive use of register operands.

As previously described (for the traditional Prolog CIF) the CIF translates the

unification of simple terms and one-level structures into one instruction. A clause head

is matched using get instructions and the body goals are set up using put instructions.

In the case of the register-based C_, the get sources and put destinations are temporary

variables (registers), whereas the get destination(s) and put source(s) can be both

temporary and permanent variables.

The get and put instruction semantics are the same as specified in Section 2.1.2.2, with

the exception of put with a var source operand. Recall that put instructions assign their

source operand(s) to their destination operand. A var source operand must f'trst be

initialized to an unbound variable before assignment to the destination. For temporary

variables, the unbound variable is created on the heap because an unbound variable

cannot reside in a register (an unbound variable resides in either the heap or stack R it

cannot exist solely in a register, which has no associated address). For permanent

variables, the unbound variable is created in the environment.

Some examples of register-based CIF code are given in Figure 2-7. On careful

examination, this CIF is similar to the WAM, with get/put_list/structure

encoded in a variable length instruction. Comparing this approach with a procedural

CIF, the fundamental difference is the use of registers and subsequent requirement of

register allocation. This is not significant in the measurements presented in this

dissertation, where an unlimited number of registers are assumed, so that reasonable

allocation is possible (although not perfect, in the sense that inter-procedural allocation

is not done). For the benchmarks measured in subsequent chapters, rarely are more than

8 registers used by this simple type of allocation.

The call and proceed instructions in the register-based CIF are similar to those of

the traditional CIF. Specific allocate and deallocate instructions manage

environments for each individual clause. TRO is therefore implemented with an

explicit deallocate followed by an execute. Note that TRO is as efficient as in

the traditional CIF -- instead of overwrSting the current frame, the temporary registers

are overwritten.

38

append ([], X, X) .

get

% get

get

proceed

X0, const ([])

Xl, vat (Xl)

X2, val (Xl)

append([XILl], L2,

get_list

% get

get_list

% put

% put

% put

execute

[XIL3]) :- append(LI,L2,L3).

X0, var (X3) ,var (X0)

Xl, vat (Xl)

X2, val (X3), vat (X2)

X0, val (X0)

Xl, val (Xl)

X2, va I (X2)

append/3

foo (f (a,
%

b, g(X)) ,X)

get

get_stct

get_st ct

put_stct

put_stct

execute

:- bingo (f (a, X, Y, g (Y))) •

Xl, var (Xl)

X0, f/3, const (a) ,const (b) ,var (X2)

X2, g/l, val (Xl)

X0, f/4, const (a) ,val (Xl) ,var (Xl) ,var (X2)

X2, g/1,val (Xl)

bingo/1

qsort([XIL],R0,R) :- split(L,X, LI,L2),

qsort (LI, R0, [XIRI]) ,qsort (L2, RI, R) .

allocate

get_list X0, var (Y5) ,var (X0)

get XI, var (Y4)

get X2, var (Y2)

% put X0,val (X0)

put Xl, val (Y5)

put X2, vat (Y3)

put X3, vat (Y0)

call split/4

put X0, unsafe (Y3)

put Xl, val (Y4)

put_list X2, val (Y5) ,var (Y1)

call qsort/3

put X0, unsafe (Y0)

put Xl, val (Y1)

put X2, val (Y2)

deallocate

execute qsort/3

F|_re2-7: Register-basedPrologCIFProg_m Examples

39

The register-basedCIF incurs frequent (de)allocationof environments during the

executionof nondcterminate code because each clause ismanaged independently. The

traditionalCIF (de)allocatesa frame only once per procedure invocation. Recall that

the traditionalCIF, however, must aUocatc frames with space enough forthe maximum

number of frame variablesamong the possibly matching clauses. Therefore the

register-basedCIF reduces cnvironmcnt sizeby incurringmanagement overheads. As

simulated in thisdissertation,the costof allocatingand dcallocatingan environment in

the register-basedCIF issixmemory references,so thisoverhead issignificant.

The qso_c/3 code in Figure 2-7 illustrates another overhead of the register-based CIF

-- the register transfer overhead. The get Xl,var(Y4) and get X2,var(Y2)

instructions in qsort/3 are not necessary in the traditional CIF. They are present here

because these arguments (R0 and R) are permanent variables and so they must be

loaded into the environment. For the benchmarks studied in this dissertation, 6.1% of

the WAM instructions executed are of this type, generating 3.6% of the total memory

traffic (see Table B-2 in Appendix B). Because the register-based CIF instruction set is

more tightly encoded than the WAM, these register transfer instructions represent

greater overhead, by percentage, in the CIF.

get_list XO, vat (X3) ,var (XO)

get_list X2, val (X3) ,var (X2)

execute append/3

operands
opcode reg tag offset total

8 12 6 26

8 12 6 26
8 16 24

24 24 12 16 76 bits

Figure 2-8: CIF Instruction Encoding (bits) -- append/3 Clause 2

The register-based Prolog CIF is encoded in a manner similar to the traditional Prolog

CIF. The only difference is that temporary register operands cannot be log 2 encoded,

resulting in slightly larger code. Figure 2-8 gives an example of CIF encoding for the

determinate execution of the second clause of append/3, in bits. In this example, four

bit register specifiers give a total of 76 bits, compared to 64 bits for the traditional CIF,

a 19% increase in size. Register-based CIF data referencing for append/3 is identical

to the traditional CIF count given in Figure 2-5 because in this case, the register-based

CIF operates solely from registers without accessing the stack.

40

2.1.4. Other CIF Metrics: Stability

In the previous sections, Prolog CIF metrics for transparency, program size, and

memory referencing arc introduced. Examples of these metrics are given for the

traditional and register-based CIFs. In this section, another important metric, stability,
1

is described. Stability measures the (potential) disruption to sequential interpretation of

a program. Stability measures include:

* the number of state transitions within a scope (indexing)

• the number of state transitions between scopes (call/return)

• the number of state transitions between a scope and a trap handier (failure)

• the number of identifiers requiring a computation to map a name into a

value (dereferencing)

• the number of binding operations potentially requiring unbinding

operations upon failure (trailing)

Call/return instructions, similar to those of conventional architectures, will not be

discussed further. Statistical results gathered in this dissertation indicate that

dereferencing is minimized with the rule introduced in the WAM: dereference only

when necessary. One explanation of this is that Prolog programs produce very short

pointer chains (almost always one or no indirections). Therefore, pre-dereferencing or

saving of dereferenced values has little advantage. The following sections define the

stability measures for trailing and indexing in detail. The discussion centers around the

traditional CIF, however, the comments hold equally well for the register-based CIF.

2.1.4.1. Trailing

A trail function is sought with which each binding is tested to determine if the binding

needs trailing. Two criteria must be met. The function must cost less than the memory

write needed to trail the binding and must filter out a large percentage of the bindings,

i.e., must reject trailing for a large percentage of bindings.

Note that all bindings reside either in the heap or in frame variables in the stack. Recall

that failure deallocates portions of the stack and heap created after the most recent or

current branch point. Thus bindings in these now deaUocated areas did not need to be

trailed. The trail function is an address comparison between the location to be bound

and the locations in the stack and heap to be backtracked to in case of failure. The

WAM performs a trail test of this type.

41

Recall that detrailing is the operation, during failure, of reading entries from the trail

and resetting the corresponding locations to unbound, i.e., unbinding them. The writes

can be filtered with an "inverse trail test," to check whether the locations are still in the

machine state. An object may have been trailed, yet is no longer in the valid heap or

stack, because a cut may have reset these areas. In fact, the trail function and inverse

trail function are identical.

Another implementation of this optimization is to garbage collect the trail, using the

inverse trail test, during a cut. This also increases the locality of the trail. Trail entries

rejected by the test must b.e either marked invalid, or removed from the trail. If they are

simply marked, detrailing must be prepared to interpret them. If they are removed, each

entry in the wail must be read and rewritten during garbage collection. Thus the only

advantage of garbage collecting the trail is to minimize its size.

Consider the following optimization. If successful execution can be guaranteed over

some segment of the program ending in a cut, then 'the trail test over that segment can

use a restricted trail test, i.e., using the branch point frame to be cut to. A restricted trail

test reduces the number of trailed objects. The problem with implementing this

optimization is determining that a given program segment succeeds. If success cannot

be guaranteed then the resmcted trail test does not work.

Another way to view this idea is as follows. It has been observed herein that in certain

programs the trail writes exceed trail reads by a significant ratio (as high as 3:1 for the

WAM). This indicates that determinancy in the program is not being detected by the

architecture, which is doing extra work trailing bindings that are never undone. An

example of this phenomenon is the procedure in.t:egers/3, shown in Figure 2-9,

which creates a list of sequential integers.

The f'n'st clause repeatedly succeeds while building the list. Finally, the fin'st clause fails

into the second clause which closes the list. For each recursive call of the first clause,

the callee matches the third argument, a variable in the caller's frame, against a list.

This structure creation requires trailing the argument in case the first clause fails. In

practice however, the fin'st clause succeeds Max-N times and fails only once. Therefore

the ratio of trail writes to reads is Max-N+1:1.

An alternative encoding of this procedure is shown in Figure 2-10. By moving the

binding of the third argument after the cut, no trailing is done because the cut resets the

current branch point frame to before the caller's frame. This modification presupposes

42

that binding the third argument can be placed after the cut, i.e., that the passed

parameter is unbound. If the procedure is to be used to check the sequentiality of a list

of integers, then this modification is erroneous because the base case (second clause)

would not be reached. The modification could be done by a compiler given the mode

declaration integers (+, +, -) .5

integers (N, Max, [NIRest]) :-

N < Max,
!
• I

N1 is N+I,

integers(Nl, Max, Rest).

integers(, , []) .

Figure 2-9: Prolog Program Example: Max-N+ 1 Trails

integers (N, Max, L) :-

N < Max,
!
• I

L = [N IRest],

N1 is N+I,

integers(Nl, Max, Rest).

integers (_, _, []) .

Figure 2-I0: Prolog Program Example: No Trails

integers (N, Max, L) :-

N < Max,

L = [NIRest],

N1 is N+I,

integers(Nl, Max, Rest).

integers(, , []) .

Figure 2-11: Prolog Program Example: Moving Comparison Into "Head"

Notice that the optirnization given in Figure 2-10 is different than moving the arithmetic

comparison as shown in Figure 2-11. This can be done independently of modes and

simply moves the comparison, which binds no variables, before matching the third

5Mode annotation was first introduced in DEC-10 Prolog [Byrd 80]. "+" specifies that the
corresponding argument is bound. "-" specifies that the corresponding argument is unbound.

43

argument. A compiler should be readily able to do this also. In the Prolog CIF, these

compiler optimizations are not assumed. Both trailing and detrailing functions are

included however, and measurements of their efficiency are presented in the next

chapter.

2.1.4.2. Indexing

In l:'rolog, invocation of a procedure causes the selection of a clause of that procedure to

execute. Alternative clauses satisfying a nondeterminat¢ procedure must be attempted

in their mxtual order. A trivial selection strategy is to sequentially attempt to match

each and every clause of the procedure. Indexing methods are selection strategies

which improve upon the trivial strategy. In this section, motivations for designing

efficient indexing methods are given. Indexing in the WAM and the Prolog CIF are

then described. Measurements of indexing efficiency are presented in Section 3.4.

Failures occur within get instructions and built-in predicates. Consider an instruction

failing in the currently executing procedure. Them are two types of failure: either an

alternative clause exists and is entered as a result of the failure, or the failure

immediately causes the entire procedure to fail because no alternative clauses exist.

Occurrences of the latter type of failure cannot be minimized in the C]]:: because they

are representative of nondeterministic program execution (recall that the translation

from Prolog source to CIF is quite simple and cannot _Lnalyze these occurrences

statically). The former type of failure, called head failure or shallow backtracking, is

indicative of a non-optimal clause selection strategy. This type of failure can be

minimized with better indexing.

Indexing, as introduced for the WAM, hashes the first passed argument into a table of

possible clauses [Warren 83a]. The resulting selection may be a single clause if there

arc no collisions, or a group of clauses. This method significantly improves upon the

trivial selection strategy, if programs properly utilize the first argument. Ideal indexing

is a selection method introduced for the Prolog CIF. Ideal indexing chooses the correct

clause, expending no extra work (i.e., instructions executed and memory references

made), unless one the following conditions exists:

1. The head of a clause matches, but the body fails -- this requires work to
match the head.

l

2. Shared variables in the head of a clause fail to unify -- this requires work

to partially match the head.

44

For two or mor_ of these occurrences, work is also required to initially load the state

values into the branch point frame, and restore these values for each failure.

Ideal indexing isa CIF attributeintroduced to maximize the stabilityof statetransfers.

Indexing reduces clause-to-clausetransfersand failures.Italsoreduces overallmemory

referencing because work matching Clause heads, and the loading and restoringof

branch point frames, is avoided. The previous definitionspecificsthatan idealindex

expends no extra work when selectinga clause. In other words, the work required to

match a head successfullyis meant to approximate the work required to selectthe

clause,the assumption being thatthe head variablesarc bound during the indexing.

Ideal indexing is simulated (using the tools described in Section 3.1) because it cannot

be analyzed statically. The simulator discounts work expended in matching clause

heads which fail because of mismatched ground variables. For example, trying to unify

f (a, b, c) with f (X, b, z) fails, and is discoun ted. Trying to unify f (a, b, c) with

f (X,b, X), however, fails but is counted because indexing cannot test shared

variables. Consider the following procedure, for the query p (3, b).

p (1, a) .

p(X,b) :- X = 2.

p(X,b) :- X = 3.

Ideal indexing discounts any work attempted to match the fL-'st clause. The work

required to execute the second and third clauses is counted. Loading state values into

the branch point frame in the second clause and the failuresequence restoringthose

statevalues for the thirdclausearc counted. For the query p (2, b), however, loading

the branch point frame in the second clause should be'counted for ideal indexing

because although the lastclause is not executed, thiscannot be determined a priori.

The simulated model isnot sophisticatedenough to catch thissubtletyand as a result,

does not account forthisoverhead.

2.1.5. Summary

In this section, Prolog canonical interpretive forms (CIFs) are defined from the

semantics of Prolog with some ideas borrowed from existing Prolog architectures. The

CIFs define the measures that limit the execution performance of Prolog (measurements

of the characteristics of the Prolog CIFs are presented in Section 3.4). Initially naive

and traditional Prolog CIFs are described -- they are based on the procedural CIFs

45

given by Flynn and Hoevel []=lynn 841. The naive model assumes a simple host with no

fast memory. The traditional model assumes a host implementing a stack buffer of

unlimited size. It is argued that such an assumption is ill-di_cmd for Prolog, where

only 75% of the data references are to the stack. To achieve canonical performance

somewhat cosily hosts must be assumed. A real host might use a non-archimcted cache,

for instance, to attempt to achieve the traditional CIF's performance. Other hosts may

choose not to incur the expense, and therefore cannot achieve even a fraction of the

traditional CIF's performance. In anticipation of this, it is beneficial to comrrain the

CIF so that the CIF does not rely on the assumption of a stack buffer of significant size.

A regiamr-based Prolog CIF is defined which assumes a host with only a single, small

register set. Inexpensive hosts (with only registers) achieve greater performance with

this constrained CIF than with the traditional CIF. Expensive hosts (with caches) have

the opportunity, by implementing fast registers at a possibly small cost increase, to also

achieve greater performance with the constrained CIF.

The register-based CIF naturally leads to direct correspondence architectures ('DCAs)

for Prolog, i.e., architectures that can be implemented on realistic hosts. The WAM

architecture, defined in Section 2.2.2, can be viewed as such a DCA. DCAs based on

the traditional Prolog CIF, such as the DEC-10 Prolog model described in the next

section, may offer better performance than the WAN{ on a host with a large stack buffer

or register w_dow set. Even on these powerful hosts, however, the performance

differential between the traditional and register-based DCAs is not anticipated to be

large. On conventional hosts, the register-based DCAs are superior to the traditional

DCAs. For this reason, the WAM architecture is chosen throughout the remainder of

this dissertation as the compiler target for the Prolog benchmarks studied.

2.2. Environment Stacking Architectures

The Prolog architecture family presented in Section 2.1 is an environment stacking

model. The first environment stacking architecture 6 was introduced in DEC-10 Prolog

['Warren 77], Historically, the WAM was derived from DEC-10 Prolog. It should be

noted that the environment stacking model is not the only successful model used to

implement Prolog. Symbolics-3600 Prolog uses a, goal stacking model [Warren 83b].

This architecture was chosen for the Symbolics implementation because it maps well

6"f'he phrase "environment stacking" was not coined until the WAM [Warren 83a], but it is used
informally in this dissertation.

46

onto the Lisp computational model and the 3500 organization [Symbolics 83]. The goal

stacking model was not chosen as the basis of the Prolog CIF, nor will it be discussed in

detail this dissertation, because the environment stacking model has superior memory

referencing characteristics.

In the goal stacking model, upon successful unification of a clause head, stack frames

are created for each goal of the body. The stack therefore exactly mimics the resolvem

of a proof as calculated with paper and pencil. This decreases the stability and

compacmess of the stack, reducing locality, as compared to the environment stacking

model. In addition, because resolution replaces the top goal of the stack by the body of

a matching clause, variables resident only in that goal must be transferred to the heap to

prevent them from being overwritten. The check necessary to determine if a variable

needs to be transferred must be performed at runtime. Although the environment

stacking model also requires this safety operation, its frequency can be reduced by static

analysis.

In the remainder of this section, both the DEC-10 Prolog and the WAM

implementations of the environment stackingmodel arc described and compared. This

constitutesa more conventionalexplanationof the WAM.

2.2.1. DE_C-IO Prolog Abstract Machine

The DEC-10 Prolog architecrare,as described in ['Warren 80],iscalledthe Prolog-10

model in this dissertation. The stack (called the local stack) correspc_nds roughly to a

conventional lang,,age's procedure invocation stack. A Prolog-10 fra_ne is a variable-

length stack frame holding the procedure's local variables, the arguments passed to the

procedure, bookkeeping information, and, if the procedure is nondeterminate,

information needed to retry the procedure at its next clause. Thus the frame is similar to

the traditional Prolog CIF frame introduced earlier.

The Prolog-10 model is built around several state registers. The registers related to the

local stack and necessary for the purposes of this discussion are r., the current local

stack frame, and B:L, the current backtrack frame. The top of the stack is defined as the

greater of _ar., and t,. The current frame pointed to by r. tieads a continuation chain of

frames correspt,nding to the T_solvent of the proof. An additional backtrack chain of

possibly interspersed frames is headed by _ar.. These frames belong to nondeterminate

procedures and are called backtrack frames.

47

The Prolog-lO calling convention is as follows. The caller loads arguments into

dedicatedargument registersand controlispassed to the callee.The calleeloads these

registersinto itsempty frame. Indexing instructionsselecta cal.leeclause to try. A

nondeterminatc calleealsoloads backtrackinginformationfrom the stateregistersinto

itsframe. Specializedunificationinstructionsin the head of the selectedclauseattempt

unificationagainstthe arguments. If the match succeeds, an enter instructionis

executed which saves certainbookkeeping information in the frame, completing the

frame. The goals arcthen calledsequentially.

Failureoccurs when a goal cannot be satisfied;i.e.,when the caller'sarguments fallto

unify with a callce'shead. Failurerestoresthe currentbacktrack frame by assigningI,
- BT.. Note thatifthe currentbacktrackframe isalready on the top of the stack,the

stateregistershave not changed -- thisiscalleds/_llow bac/ctracldng.Ifthisisnor the

case then the bookkeeping informationin the new currentframe must bc restored(deep

bac/crrac/dag).In eithercase,any bindings made by the unsuccessfulgoal are undone

and execution proceeds with an alternativeclause. The Prolog-10 model handles

shallow backtracking efficiently.The price for efficientbacktracking is the calling

convention having the calleealways load the argument registersintoitsnewly formed

frame and the overhead of always referencing variablesfrom the frame to avoid

refreshingt.hcargument registersupon backtracking.

Cut isimplemented inthe Prolog-10 model by travelingdown the backtrackchain until

a frame isfound predatingthe currentframe. BL isassigned to point to thisbacktrack

frame,trimming thestack.

ZIP and NIP, developed by Byrd [Bowen 83] and Bowen [Bowen 84] respectively,are

environment-stacking models thatform an architecturalmidpoint between Prolog-10

and the WAM. NIP, an improved version of ZIP, has a storage model with frames

similarto those of Prolog-10. The NIP abstractmachine isan improved (cleancd-up)

versionof the Prolog-10 abstractmachine, similarin many respectsto the WAM. The

NIP compiler moves certainprimitivegoals (e.g.,vat/l, cut/0, etc.)appearing

immediately afterthe neck of a clause to before the neck. This furtheroptimizes

shallow backtracking by allowing failureto occur earlier,before work is cxpcndcd

complcting thcframe. Note thatNIP differsmost significantlywith the WAM in thatit

does not have indexing.

#,8

2.2.2. Warren Abstract Machine

The WAM is a more recent environment-stacking model developed by D.H.D. Warren

[Warren 83a], based on the Prolog-10 and NIP models and fL"stimplemented for the

VAX. The WAM model defines a stack with two types of variable-lengthframes:

environments and choice points. An environment holds' only local variables and

bookkeeping information. A choice point holds arguments passed to a nondeterminate

procedure and backtracking information. A continuation chain links environments and

a backtrack chain linkschoice points.This separationpermits compiler optimizationof

choicepoint allocationonly where necessary.

E

B

w'a

TR

P

CP

S

X0... XI5

Table 2-I:

currentenvironment

currentchoice point

heap pointer
heap backtrack pointer

trail pointer
current instruction pointer

continuation instruction pointer

heap structure pointer
argument registers

WAM Model State Registers

The WAM model has state and argument registers, summarized in Table 2-1, which are

similar in function to those of the Prolog-10 model. The stack is also managed similarly

-- the top of stack ts the more recent of m. and B. The backtracking information in a

choice point includes a pointer to the environment active when the choice point was

created.

The WAM model calling conventions are as follows. The caller loads arguments into

dedicated argument registers and control is passed to the callee. Indexing instructions

select a callee clause to try. If the callee is nondeterminate, i.e., if indexing cannot

narrow down the field of possibly matching clauses to one, a choice point is created and

loaded with the argument registers and backtracking information (r.., B, It, CP, P, TR).

Specialized unification instructions in the head of the selected clause attempt unification

against the arguments. If the match succeeds, the goals of the clause are called

sequentially.

Failure restores the machine state from the current choice point, which is left in place (a

• 49

subsequent instruction will remove the choice point if no alternatives remain). Tit, CP,

P, _.., and the argument registers are reloaded with values from the choice point. _r is

reloaded from HB, a state register which mirrors the II value saved in the choice point.

Shallow backtracking occurs when the current choice point _s the most recent frame on

the stack. Otherwise deep backtracking occurs and resetting B tnrns the stack.

In the case of shallow backtracking, restoration of g and CP is unnecessary because

head unification cannot modify these registers. As mentioned, the Prolog-10 model

avoids saving and restoring these registers with the enter instruction. It is also

possible that the argument registers have not been modified before head failure. This

cannot be guaranteed by compilers that overwrite regismrs during head unification. If

this optimization is removed, saving and restoring argument registers is unnecessary

until after the clause body is entered. With these two modifications, the WAM model

approaches the Prolog-10 model's shallow backtracking efficiency.

One method by which cut can be implemented in the WAM model is by assigning B to

the choice point immediately preceding the current environment. If the current

environment is nondeterminate, B is reassigned to point to the choice point before this

choice point. The action of resetting B may trim the stack. This implementation of cut

is adopted in this dissertation.

2.2.3. Comparison Between Prolog-1 0 and WAM

To compare the WAM and Prolog-10, consider the program in Figure 2-12. As

described in the previous section, the WAM model [Warren 83a], and the l:'rolog-10

model Warren [Warren 80], do not correspond precisely to either the WAM variant

measured in this dissertation (introduced in the next section), nor to actual DEC-10

Prolog. For the purposes of comparison, however, the models described here are

sufficient to approximate the performance of the actual architectures.

Table 2-2 shows the correspondence between the Prolog-10 frame and the WAM choice

point and environment. For instance, P (_) represents the instruction pointer, _', saved

in the current WAM choice point, pointed to by B. Thus P (B) indicates which

instruction to execute next on backtracking. BP (-r.) corresponds to the same Prolog-10

information. Note that because the WAM splits the Prolog-10 frame into a choice point

and environment, sometimes redundant information is saved, as E (B) - E (v.) and

CP (B) - CP (v.). This happens whenev.er a choice point followed by an environment

is created for the same clause.

a

a

(a,X)

(b,x)

(c, 1)

:- b (x).

:- b (X), : (X), d (X).

z (a, X)

z (b, X)

z (c, 1) .

z (_,_) .

:- b(X).

:- b(X),c(X),d(X).

b(1).

c(i).

d(1).

Figure 2.12: Program Example: WAM/Prolog-10 Comparison

To determine the differencesin execution between the WAM and Prolog-10 models,

variousqueriesof the program in Figure2-12 arcconsidered. The queriesare described

inTable 2-3. The machine code and tracesused tocalculatethesestatisticsare listedin

Tick [Tick 87b]. Table 2-3 liststhe query, the success or failureof the query, the

number of memory references made by each model, and the difference bctwecn

memory reference counts. Also listedare whether the WAM model builds a choice

point and an environment. The Prolog-10 model buildsa frame for allqueries and

saves backtracking information only for the z/2 queries (i.e.,the nondetcrminatc

traces).

A hypothesis isthatthe WAM willdo better(i.e.,make fewer memory references)for

determinate traces,Prolog-10 willdo betterfor shallow nondctcrminatc tracesand both

will be equal for deep nondetcrminate traces. Table 2-3 supports this hypothesis.

Determinate execution of a/2 favorsWAM by four to eightmemory references.Dccp

backtracking (z (a, 2) and z (b, 2)) marginally favors Prolog-10 by one to three

memory references.Shallow backtracking,z (c, 2), favorsProlog-10 by six memory

references.

One place where the shallow backtracking savings occur is the Prolog-10 enter

instructionwhich separatesthe head and body of a clause. The enter instruction

saves G, CL and CP (equivalently,H, g and CP for the WAM), which arc laterrestored

in the optimized lastcallby the depart: instruction.Ifthe head isnot completed, i.e.,

itfails,the enter isnever executed. The fa£1 operationdoes not restoreG, CL or CP

51

WAM Prolog-10

B (B) BL (L)

H(B) G(L)

E (B) CL (L)

CP (B) CP (L)

TR (m) TR (L)

P (B) BP (L)

At..Am (B) At..An (L)

contents

pointer to previous choice point
pointer to heap frame for choice point

pointer to environment
continuation pointer

pointer to trail

pointer to instruction to try next

arguments

E (E) CL (L) pointer to previous environment

CP (E) CP (L) continuation pointer
YI..Yn(E) YI..Yn(L) va.dables

Table 2-2: WAM and Prolog-10 Stack Correspondence

memory references

query cp env status Prolog-10 WAM diff

a (a, 1) no no succeeds 5 0 +5
a (b, I) no yes succeeds 14 6 +8

a (c, 2) no no fails in head 4 0 +4
a (a, 2) no no failsinfirstgoal 5 0 ÷5

a (b, 2) no yes failsinfu'stgoal 8 4 +4

z (a, I) yes no succeeds 11 8 +3

z (b, I) yes yes succeeds I I 16 -5
z (c, 2) yes no fails in head 11 17 -6

z (a, 2) yes no fails in fLrSt goal 16 17 -I
z (b, 2) yes yes fails in fu-st goal 18 21 -3

Table 2-3: WAM and Prolog-I0 Memory Referencing

because they are not modified in the head. Familiarity with the WAM will no doubt

cause confusion as to why G, the heap pointer, cannot be modified in the head. This is

because Prolog-10 uses structure sharing to represent terms in the heap. Since the

WAM uses structure copying, H may be modified in the head, but E and CP are not. If

the WAM is modified to save E and CP in an instruction similar to enter, this would

save four memory references (two writes and two reads) during shallow backtracking.

Assuming that fetching the new enter instruction itself requires a one byte memory

reference, the savings is reduced to 3.75 references. This savings can be attained only if

shallow failure is distinguished from deep failure, to avoid restoring E and CP from the

choice point in the former case. The conclusion here is that the WAM can be modified

to incorporate Prolog-10 optimizations, although the savings may not outweigh the

implementation overheads.

52

Another area where savings might occur is the method of saving arguments. In the

Prolog-10 model, arguments are saved in an arrive instruction and then referenced

from the environment by subsequent body instructions. The WAM model also saves

the arguments (in a choice point by the try_.me..else insn'ucfion) but references

them from the register set (possibly modifying them). Thus failing clauses require the

register set to be refreshed from the choice point. The trade-off here is summarized in

Table 2-4.

advan_ge

disadvantage

Proloe-lO

saves args once
per procedure

WAM

references args from

registers

references args restores arEs once

from environment per clause

Table 2.4:Prolog-10 - WAM Tradeoffs

A possible hardware solution to this problem is to flag modified argument registers in

the WAM. If none are dirty, restoration may be skipped on failure. Although shallow

backtracking may still entail modification of argument registers (while setting them up

for a body which is never entered), most unit clauses can be compiled to avoid

modification. Turk has also suggested this solution [Turk 86].

Register windows axe another idea to solve the register modification problem. In the

simple case of shallow backtracking, the reg_:_ter window scheme is as follows. A

clause matches its head from one window and places arguments to its f'L,'Stgoal in an

alternative window. Recovery from head failure is automatic. For more complex

execution scenarios, however, register windows are more appropriate for the Prolog-10

architecture than for the WAM. A Prolog-10 frame maps well onto a window, whereas

the WAM requires splitting windows between environment and/or choice point objects.

Bordello et. al. [Bordello 87] suggest using the SPUR processor's register windows for

choice points only. Measurements presented in Chapter 3 suggest, however, that

shallow backtracking is the predominant form of nondeterminate execution in Prolog

programs. This implies that a single choice-point buffer, like that of the PLM or

Pegasus, is sufficient to capture mos, choice point traffic. Therefore allocating an entire

set of register windows for the choice point stack is not cost-effective.

On the SPUR, environments cannot be allocated in register windows because registers

53

are not mapped onto memory addresses. Therefore an unbound variable (which points

to itself) cannot reside solely in a register. Stack memory addresses can be aliascd onto

the register windows at the cost of additional hardware [Katevcnis 83]. Simple aliasing

hardware has the disadvantage of requiring that contiguous windows correspond to

contiguous memory addresses. This implies that the advantage of overlapping windows

can be gained only if the caller's environment is at the top of stack.

2.2.4. Lcode Architecture

The inst1"uction set used in this study, called Lcode, derives from both the WAM model

[Warren 83a] and the Berkeley PLM architecture [Fagin 85]. About 90% of these

instruction sets are identical. Differences between the models are detailed in the

remainder of this section.

2.2.4.1. Lcode Instruction Set

Lcode is introduced by means of the flattenCode/3 example presented earlier in

Section 1.3. The flattenCode/3 I.code, annotated with the Prolog source program,

is shown in Figure 2-13. Recall that flattenCode/3 flattens a structure into a list_

Choice points created for the furst two clauses of flattenCode/3 are immediately

cut by their fLrst goals. Choice points are created to allow the third clause, the

"catchall", to be attempted should the others fall. The compiler could avoid creating

these choice points by optimizing across clause boundaries within a procedure.

However, this code is being used as a simple example of a more pervasive problem

which cannot always be recognized and removed by the compiler.

When flattening a deeply nested structure, flattenCode/3 recurses around the

second clause. The switch term selects label 70 because the first argument, X0, is

a structure. The try. me else instruction at 70 creates a choice point and attempts

the second clause. The choice point is created in anticipation of failing through to the

following clause, beginning with a trust me else instruction. The second clause at

label 75 first matches the head and then executes a cu{:. The cut removes the last

choice point created (by the try. me else at label 70). Subsequent recursive goals

follow. The final goal uses TRO by deallocating the second clause's environment

before the recursive call (the execute instruction).

Failing to match the head is an example of shallow backtracking. Figure 2-14 shows

the instruction sequence comprising choice point creation and removal for head failure.

54

"flattenCode/3:

switch term

try 3,73

retry 75

trust 69

71, 69, 70

71:

73:

try_me_else 3,72

get_constant XO,void/O

get_value XI,X2

cut_strong

proceed

% flattenCode (

% void,

% Code, Code)

% !.

• m

72: trust 69

70:

75:

try_me_else 74

get_structure XO,',/2'

unify_variable XO

allocate 3

unify_variable Y2

get_variable YO,X2

cut

put variable YI,X2
call flattenCode/3

put_value Y2,XO

put unsafe value YI,Xl

put,value --YO,X2
deallocane

execute flattenCode/3

% flattenCode (

% ,(
% Seql,

% Seq2),

% Code,

% CodeO) :-

% !,

% flattenCode(Seql,CodeO,

% Codel

%),
% flattenCode(Seq2,

% Code1,

% Code

).

74:

69:

trust me else fail

get_list X1

unify_local_value XO

unify_local_value X2

proceed

% flattenCode(Instr,

% Instr_

% Code],Code).

Figure 2-13: Lcode Program Example: flattenCode/3

• 55

Figure 2-15 shows a similar sequence for head success. The importance of these two

traces is that they both create and remove a choice point. The failure sequence restores

the state held in the choice point giving it a larger penalty than the successful sequence.

Both, however, contribute equally to choice point write bandwidth -- an overhead

contributing only indirectly to program execution.

70: try_me_else 74
' /2' % fails...75: get_structure XO, ,

trust me else fail

Figure 2-14: Instruction Trace of Head Failure: flattenCoded3

70:

75:

Figure 2-15:

try me else 74

get_structure XO, ',/2'

i

get_variable YO, X2
cut

Instruction Trace of Head Success: flattenCodel3

Table 2-5 summarizes the Lcode instruction set. There are in addition several

arithmetic instructions, not shown in the table. The operands are denoted as C - atom,

integer or functor (constant), Xi - temporary variable (register specifier), Xi -

permanent variable (offset in current environment), Vi - argument register or

permanent variable, L - instruction address, and n - integer. The head and goal

matching instructions are previously introduced as the get and put instructions in the

Prolog CIF. The tag of a single get destination operand (or a single put source

operant) is incorporated into the WAM opec)de. In addition, all instructions are fixed

length, get�put_list/structure instruction operands are allocated individual

unify instructions. The arithmetic, cut, branch, comparison, and escape Lcode

instructions are not present in the WAM. Refer to Tick [Tick 87a] for the complete

Lcode semantics. Refer to Warren [Warren 83a], Gabriel [Gabriel 85], or Fagin ['Fagin

85] for the WAM instruction semantics.

56

loal matchin_

put..variable Vi, Xi

put .constant Xi, C

put_nil
put_llst xl
put_structure Xi, C

put_value Vi, Xi

put_unsafe value Yi, Xi

clause control
allocate n

deallocate

call L

execute L

p=ocead

escap_ n

head matching

g.t_va=lable vi, Xl

get_constant Xi, C

get_nll Xi

get list Xi

get_structure Xi, C

get_value vi, Xi

_u_c_rematching
unify_va=iable Vl

unify constant C

unify n£i

unify_value Vi

unify_local_value Vi

unify._vold n

indexing

branch n, Xi, L

con_ n, Vl, VJ

cond n, Vi

hash C, L

ju_ L
switch term Lc, LI, Ls

switch constant n

switch structure n

procedure control

try n, L

=airy L
trust L

try me.else n, L

=at ry_me_else L

Urust_me .else_fail
cu_

cutstrong
curd L

fail

Table 2-5: Lcode InstructionSet

2.2.4.2. Lcode Storage Management

Throughout theI.,codesystem,design decisionswcrc made with speed and simplicityas

the most important considerations. The emulator is only used to analyze progTam

execution and thereforeuserinterface,errorrecovery,and ease of program development

were minor or nonexistentconsiderations.Note thatthe specificsof Lcodc data types,

tags, storage ar_as and storage management, as defined below, do not accurately

resemble a realisticl_rologimplementation. Many details,necessary for such an

implementation (e.g.,garbage collection),arc purposely missing tofacilitateanalysisof

the featureswhich are included. The Lcodc system isused to emulate a number of

alternativearchitectureattributesand thereforeisrepresentativeof a range of Prolog

architectures,e.g.,the PLM and theWAM.

The I.,codeemulator manages six memory areas:code space,symbol table,heap, trail,

stack and push down list(pdl). The code space contains the Lcodc object image.

Assertand retractarc not implemented, so thisareaisfixed.The symbol tableholds tbc

print-names of atoms, functors,procedures and top-lcvclvariables. The heap hotds

structuresand unsafc values and isdynamically managed as a stack. The stack holds

environments and choice points.The pdl isused by generalunificationand ==/2, both

5"7

of which are implemented as recursive functions. The emulator does not check for

memory area overflows. No facilities for data a_a shifting, trimming or garbage

collection arc implemented. In addition, cut does not garbage-collect the trail.

Maximum data area sizes may be specified as emulator input, and stay timed during

execution.

integer
nil

atom

functor

ref

unbound

list

structure

<-- 4 bytes -->

2s-complement value 011

00000000100000000100000000[00000111

000000001

arity]

identifier l 111

identifier l 111

long address O0

self address O0

long address Ol

long address I0

Table 2-6: Lcode Data ObjectFormats

A data object is a word (32 bits) composed of a variable length tag and a value. Lcode

data objects are defined in Table 2-5. An identifier is an offset into the emulator's

symbol table. Unification of atoms, for instance, is done by comparing identifiers. An

].,code linker has not been implemented, so that entire Lcode programs must be

assembled together to allow proper identifier assignment. A long address is a full 30 bit

address pointing to another data object. An unbound variable points to itself (a self

address) to differentiate it from an indirect reference.

Note that the/..code architecture (like the WAM) is structure copying, i.e., unifying an

unbound variable with a structure involves copying the entire smacture in the heap. In

addition, the Lcode emulator uses standard list coding, requiring two heap words per list

cell.

Lcode instructions axe either one, two or three words long. Minimal encoding i's de-

emphasized to allow fast emulation. The first hal/word of each instruction is an opcode.

An opcode is the address of the C code emulating that instruction. This allows fast

instruction dispatch but requires that the emulator kernel fit in the flu'st 64 Kbytes of

virtual memory.

Arbitrarily large programs can be compiled and executed. This is implemented with

both absolute and instruction relative addressing. To avoid a linkage phase, absolute

58

addressing is actually implemented as base relative, where the base is the fin'st location -

of the program. Base relative addresses are a full 32 bits long and are usa only by

inter-procedural branches, i.e., call and execute. Instruction relative addresses are

16 bits and are used by all other branches, i.e., all intra-procedural branches. This

distinction required the introduction of the jump instruction to implemant disjunction,

rather than with the execute instruction, as is done in the PLM compiler. Note that

intra-procedurai branch offsets for the PLM are only 8 bits.

I.,codechoice points are composed of a f'vccdsizebookkeeping area (7 words) and a

variable size argumenl area (c.f.,the PLM choice points which arc fixed size of 15

words). I..codeenvironments axe composed of a fixed sizebookkeeping area (4 words

-- c.f.,the WAM with 2 words) and a variablesizepermanent variablearea. Both

choice points and environments remain staticallyfixed in size once they are created

(c.f.,theWAM, which trimsenvironments).

2.2.4.3. Lcode Instruction Encoding

As is previously mentioned, the I..codcinstructionset is loosely encoded to make

emulation efficient.Itisof interest,however, to measure the instructionbandwidth of

more tightlyencoded versionsof the insU'uctionset.The Lcode emulator calculatesthe

bandwidth of severalencodings. All instructionbandwidth measurements presented in

thisdissertationare calculatedindependently of the actual Lcode encoding by f'trst

tallyinginstructioncounts,and then scalingthecounts by appropriateinstructionsizes.

In thissection two simple cncodings axe brieflydescribed:word and byte boundary

encodings. In Section 3.3.2,bit boundary cncodings axe introduced and instruct.ion

bandwidth measurements are presented for allthe encodings. Word (byte)boundary

encodings force each instructionto occupy an integralnumber of words (bytes). The

Lcode instructionopcrand types are listedbelow. The operand sizesgiven arc validfor

word and byte boundary encodings only.

I.immediate constant-- fourbytes encode allProlog dataobjects:integers,
atoms and functors.In addition,severalinstructionsuse small (one byte)

immediate constants,e.g.,the allocate operand specifyingthe number

of perrnancntvariablesin theenvironment.

2.temporary registerspecifier-- four bitsencodes 16 registers(c.f.,PLM

with 8 registers).Extra procedure arguments can bc collectedby the

compiler intothelastargument. Ifmore temporariesarc nccdcd during an

arithmeticcalculation,for instance,they can bc allocatedas permanent

registers.

59

3. permanent registerspecifierm eight bitsencode 256 registers. This
should bc sufficientfor most applications(note that Quintus Prolog

[Quintus 86] and PLM alsohave thisrestriction).

4.local (inter-procedure)branch targetw both one and two byte offsets

(from the program counter) arc measured. PLM, for instance,uses one

byte offsets.Warren suggestsusing two byte offsets[Warren 83a].

5.global(procedure call)branch targetw a two byte offsetfrom a segment

rcgism.risassumed.

The I.,codeformats axe summaxizcd inTable B-1 inAppendix B.

2.2.4.4. Split Stack Architecture

The splitstackmodel isa modificationof the WAN[model wherein environments and

choice pointsarc storedseparatelyin an environment stack (E-stack)and choice point

stack (B-stack).The I.,codeemulator can optionallyexecute Prolog programs with the

splitstack model. The main advantage of thismodel is an increase in the spatial

localityof environment and choicepointreferences.

In Chapter 3, itisshown thatafterchoice pointreferences,environment referencesare

the next largestcontributortothe Prolog databandwidth requirement. In Chapter 4,an

E-stack bufferisinvestigatedto reduce thisbandwidth requirement,preferablya buffer

which can hold the multipleenvironments at the top of the continuationchain. The

buffermust hold only environments toavoid aliasingthe choice pointbuffer.The split

stackmodel facilitatesa directlyaddressable,wrap-around E-stackbuffermuch likethe

stack buffcrpreviouslydescribed. As willbc shown, an E-stack bufferof one halfthe

size of a corresponding WAM model stack buffer will give similar reductions of

envixonmcnt trafficand effectivememory accesstirnc.

The splitstackmodel must retaininformationimplicitinthe singlestackmodel, i.e.,the

positionof the choice pointswith respecttoenvironments. The key isto expand the B

registerintoa registerpair.{B,C}[Byrd 85]. B servesthe functionof theold B, linking

the choice point chain togetherwithin the B-stack. C pointsintothe E-stack to where

the choice point "would have been" (inthe single-stackmodel). More precisely,C is

the address of the top ofE-stack when the choicepoint was created. The top of E-stack

isdcf'mcd as the topmost validentry(inthe topmost validenvironment) inthe E-stack.

The B pointerand choice pointsizeentriesina choicepoint are now redundant because

the B-stack isa truestack.Thus thc sizelocationcan bc reused tohold C. Note thatthe

60

E pointer and environment size in an environment are not redundant because the E-

stack is not a true stack, i.e., the current environment may not be at the top of stack.

The current instruction semantics work for the split stack model with minor

modifications for {B,C}. B represents not only the current choice point but also the top

of the B-stack. Thus cuts naturally deallocate choice points from the B-stack and no

"deep" choice points occur. E still points to the current environment, not the top of

E-stack. The top of E-stack is defined as

if (C > E) TOS = C; else TOS = E;

When creating a new choice point, the state is pushed onto the B-stack and then C and B

are updated:

if (E _ C) C = E;

B -- B + $izeof(choieepoint);

A consequence of a true choice point stack is that cutting a choice point is permanent

(this is not so with the single stack model, where an environment can "protect" a deep

choice point). Thus, cuts in a nondeterminate clause cannot be permitted to cut out the

clause's choice point if subsequent cuts in the clause axe to work. There are two

solutions to this problem: a lazy cut, described in Tick [Tick 85], or a compiler source-

to-source transformation converting predicates with multiple cuts into a sequence of

single cut predicates. For example,

p :- bl, !,b2, !,b3.

_-> p :- bl, !,p' .

p' :- b2, !,b3.

RecaI1 that the WAM trail test is

trail(A, HB, B) :- A < HB ; A < B.

The split stack trail test is similar:

trail(A, HB, B) :- A < HB ; A < C.

61

2.3. Restricted AND-Parallel Prolog Architecture

Exploitation of parallelism in logic programming languages is of great interest because

sequential performance is limited. The two main approaches to exploiting parallelism

in logic programming are committed-choice nondeterrninistic arid don't-know

nondeterministic languages. Committed-choice nondeterministic languages sacrifice

backtracking to reduce the complexity of the abstract execution model and efficiently

exploit parallelism. The three most prominent members of this language family are

Concurrent Prolog [Shapiro 83], Parlog [Clark 85], and Guarded Horn Clauses [Ueda

85]. Don't-know nondeterministic languages, e.g., Prolog, retain full backtracking

capabilities. Many implementations use an extended version of Prolog, exploiting both

AND and OR parallelism. Examples are ANLWAM m an OR-Parallel Prolog

architecture [Butler 86], and PWAM -- a Restricted AND-Parallel (RAP) Prolog

architecture [Hermenegildo 87a].

As stressed in the previous derivation of the Prolog CIF, good memory referencing

characteristics (e.g., high locality) are essential in a high performance architecture. In

the next chapter, the Prolog CIF and the WAM axe shown to have excellent memory

referencing characteristics. In other words, the primary advantage of these architectures

is their storage model. One would hypothesize that a parallel architecture based on this

sequential architecture family would perform well if it exploited a large enough grain of

parallelism to remain within the sequential storage model most of the time while

executing. This is the seminal idea behind various parallel Prolog architectures such as

ANLWAM and PWAM.

The key notion in RAP-Prolog is the annotation of a program with conditional graph

expressions (CGEs). A CGE consists of a condition followed by a conjunction of goals.

CGEs can appear anywhere a conventional goal can appear in a clause, including nested

within another CGE. The condition is a logical combination of checks on any of the

variables appearing to the left of the CGE. The checks test independence and (stronger)

groundness of sets of variables. These checks can be expensive operations_ A full

check in general requires traversal of all terms associated with the variables being

tested; however, much cheaper checks can be used in return for a certain loss of

parallelism. In addition, mode and type analysis performed by the compiler with the aid

of user annotation can reduce (or eliminate altogether) the number of required checks.

Figure 2-16 shows the isotree/2 example of Section 1.3 written in RAP-Prolog.

Note that if subtrees are left uninstanfiated, :i.sot:ree/2 attempts to ensure

62

:- mode isotree (g, ?) ,

isotree (void, void) .

isotree (tree (X, Left1, Right1),

tree (X, Left2, Right2)) :-

(indep (Left2, Right2) I

isotree (Left1, Left2) &

isotree (Rightl, Right2)

).
isotree (tree (X, Left1, Right1),

tree (X, Left2, Right2)) "-

(indep (Left2, Right2)]

isotree (Leftl, Right2) &

isotree (Right1, Left2)

).

Figure 2-16: RAP-l_olog Program Example: iso_ee/2

isomorphism by binding. Suppose the user knows a priori that the f'u'st tree is always

ground, but the second tree may have uninstantiated, possibly shared, subtrees. This

information is indicated by the mode declaration isotree(g, ?), similar to a

DEC-10 Prolog mode declaration, indep/2 is the check of the CGE containing both

A_N'D-parallel recursive goals. The checks ensure that the second arguments share no

variables, allowing them to be executed in parallel. If the second argument were known

to be ground (isoeree (g, g)) or contain no shared unbound variables

(isotree (g, i)) then no checks would be needed.

At runtime, the conditions are evaluated to either true or false. During the execution of

a CGE, if the conditions evaluate to true, the goals can be executed in parallel and are

known as a parallel call. Otherwise the goals must be executed sequentially. A

parallel goal is a goal invoked by a parallel call. Failure of a parallel goal cannot be

affected by alternative executions of other parallel goals (because they are all

independent), and so the entire CGE fails. Failure back into a parallel call, from

subsequent sequential goals outside the CGE, causes all parallel goals to the right of the

rightmost goal with remaining alternatives to be unwound and restarted. This allows

generation of tuples of results in the same order as in a sequential execution. This

l:<'Licy is more complex to implement than others which don't guarantee sequential

backtracking order, however, intelligent backtracking may be purposefully indicated by

the user's goal ordering and so order must be preserved. Other optimizations exist for a

determinate CGE which is followed by a cuL

83

Note that the design of the PWAM architecture and memory hierarchy must account for

the case when a parallel call spawns processes for all its conjunctive goals, and these

goals are passed arguments from the parent. In addition, these arguments can be

arbitrarily complex and contain hidden logical variables through which results will be

bound by the child and passed back to the parent.

Frame Type LocatiOn In WAM? Races? Locality

Env/Bookkeeping Stack Yes No Local
Env/Permanents Stack Yes No I Global

Choice Points Stack Yes No Local

Heap Heap Yes No I Global
Trail entries Trail Yes No Local

PDL entries PDL Yes No Local
Parcall/local Stack No No Local 2

ParcalYglobal Stack No No 4 Global 3
Markers 5 Stack No No Local

Goal Frames Goal Stack No Yes 6 Global

Messages Mess. Buffer No Yes 7 Global

Table 2-7: PWAM Storage Model (notes 1-7 in text)

PWAM is an ex_nsion of the WAM architecture. A fundamental design criterion of

PWAM is fast sequential execution for cases where there is no available (AND)

parallelism. To this end, CGE semantics are integrated into the WAM storage model.

PWAM extends the WAM storage areas as summarized in Table 2-7 [Hermenegildo

87b]. PWAM adds Parcall Frames and Markers to the WAM stack. These can be

allocated on a choice point stack in a split PWAM architecture. PWAM also adds Goal

Frames and Messages, in their own separate storage areas. Each PWAM process

references it own stack, heap, trail and pall. The Goal Stack and Message Buffer are

shared by all processes executing on a single processor (in the following chapters,

references to the Goal Stack and Message Buffer are called the communication

references of the PWAM model). For a complete discussion of the use of the PWAM

storage areas, see [Hermenegildo 87a, Hermenegildo 87b, Hermenegildo 87c]. Table

2-7 is annotated with the following notes.

1. The model guarantees that only one process can write each of these

variables (goal independence parallelism). Several (child) processes can
read them, but the parent process will not read them until all children have

succeeded. Child processes cannot read the variables until these processes
are scheduled.

64

.

3,

,

g

.

7,

The local part of the Parcall Frame contains bookkeeping information for

parallel processes.

The global part of the Parcall Frame includes the number of goals still to
schedule, the number of goals to wait on, and the process slots (one per

goal in the CGE).

Although the process slotsare global,they don't need to be locked --

only a child process can write them and the only _me the slotsmay be

read by the parent is afterthe child has completely succeeded. Thus the
situationin theParcallframe issimilarto thatin environments:

local part of Parcall Frame = bookkeeping pan of environment

process slots - permanent variables

The other two global entries (the number of parallel goals to wait on and
the number of parallel goals still to schedule) arc semaphores and

therefore require an atomic read-modify-write operation to avoid races.

For the purposes of memory referencing, the Input Markers, Wait

Markers, a_d Local Goal Markers are identical. They are also similar to
choice points, except that they do not save the argument registers.

There can be races while stealinga goal from the Goal Stack (several

processes may simultaneously tryto do so and the actionentailsseveral

memory references).Thus, a lock isneeded for controllingaccessto each

processor'sGoal Stack.

Several processes may simultaneously attempt to write into the Message
Buffer, so this needs to be locked; however, messages represent a small

percentage of references, since they used only during deep and
"inteUigent" backtracking across processors.

2.4. Summary

Several instruction set architectures for Prolog are introduced in this chapter. Initially, a

family of Prolog canonical interpretive forms (CIFs) is defined from the semantics of

Prolog with some ideas borrowed from existing Prolog architectures. The CIFs define

metrics that limit the execution performance of Prolog -- measurements of these

metrics arc presented in the next chapter. Three CIFs are described: naive, traditional,

and register-based. The naive and traditional models are based on procedural language

CIFs. Whereas the naive model assumes a simple host, the traditional model assumes a

host with a stack buffer or" unlimited size. The register-based CIF constrains the

traditiona] CIF, assuming a host with only a seaall register set.

The progression from one Prolog CIF to the next represents a refinement of the ideas of

canonical architectures developed by Flynn and Hoevel [Flynn 84]. The naive

architecture directly corresponds to the Prolog language, to the extreme degree that the

entire name space is mapped into a single memory space. The observation is made that

references to local identifiers and arguments within a scope can l_e captured for reuse by

a hardware buffer. The traditional architecture maps stack references into such a

hardware stack buffer (of unlimited size) in the underlying host. Such a model is

"traditional" in the sense that procedural CIFs make a similar host assumption. This

assumption is possibly more warranted for procedural languages, which make frequent

procedure stack references, than for Prolog, where only 75% of the data references are

to the stack. Prolog makes frequent use of the heap also, for dynamic creation and

unification of data structures. The register-based CIF is a further refinement of the

traditional model, wherein the assumption of an underlying stack buffer is removed and

replaced with a register set. These changes represent a relaxation of the correspondence

between the CIF and Prolog, and a divergence from the traditional view of canonical

architectures. The constraints imposed, however, offer higher performance for direct

correspondence architectures (DCAs), i.e., Prolog architectures that can be implemented

on realistic hosts. A DCA based on the traditional CIF is the Prolog-10 abstract

machine. A DCA based on the register-based CIF is the Warren Abstract Machine

(WAM). These two architectures, in addition to PWAM, a Restricted AND-Parallel

l:'rolog extension of the WAM, are described in this chapter.

The presentation given here of the Prolog-10 and WAM models constitute a

conventional or evolutionary approach to Prolog architecture design. These

environment stacking architectures represent the two most popular Prolog

implementations. A comparison of the high-level memory-referencing characteristics

of the two is given. The results suggest that the WAM makes fewer memory references

in determinate programs, Prolog-10 makes fewer memory references in shallow

nondeterminate programs, and both make approximately equal numbers of references in

deeply nondeterminate programs. Thus the WAM achieves its goal of optimizing the

execution of determinate code (with respect to Prolog-10), at the cost of slower

nondeterrrdnate execution. What was not known at the time of the design of the WAM,

however, was the extent of shallow nondeterminate execution in seemingly determinate

programs. As is shown in the next chapter, realistic Prolog programs, although largely

determinate, display much shallow backtracking when translated with a simple

compiler. The WAM, however, has advantages over Prolog-10, such as higher locality

resulting in more efficient use of storage. In realistic implementations, these space

saving advantages can outweigh the speed disadvantages caused by inefficiencies in

backtracking.

66

A final sequential environment-stacking architecture, called Lcod¢, is described in this

chapter. Lcode is the actual instruction set emulated and measured for this dissertation.

l.,code is closely related to the WAM, and the differences between the two do not

significantly affect the measurements presented here. All sequential architectures

measured, including the Prolog CIFs and split stack archimctures, are modeled with

variations of the Lcode compiler and emulator. The parallel Prolog architecture,

PWAM, is modeled with a separate compiler and emulator. These tools arc further

described in the next chapter.

A high-leveldescriptionof the PWAM model isalso given in thischapmr. PWAM is

chosen for study because itiscloselyrelatedto the WAM, allowing a faircomparison

of the overheads incurred by the exploitationof parallelism. In addition,itappears

promising thatthe PWAM model can be extended for OR-parallelism, e.g.,with the

mechanisms introducedin ANLWAM [Butler86].

67

Chapter 3

Prolog Architecture Measurements

In this chapter, a methodology is described for measuring the dynamic memory

performance of Prolog programs compiled into the instructionset architectures

described in the previous chapter. The benchmarks measured with thisexperimental

approach are then described. Next, high-levelstatisticalcharacterizationsof Prolog's

memory requestbehavior are presented.From thesehigh-levelstatistics,problem areas

and performance bottlenecksare noted which give credence to various localmemory

models. In the next chapter,these memory models arc described and simulation

measurements arepresentedand analyzed.

Several importantresultsare presentedin thischapter. Shallow backtrackingisshown

to dominate the Prolog data bandwidth requirement. This is shown by analysis of

choicepointreferencingcharacteristics,as well as by measurements of theeffectiveness

of "ideal"indexing in the Prolog CIF. In addition,theWAM stack isshown to exhibit

high localityof reference,indicatingthatvarioustypes of stack bufferscan effectively

reduce Prolog's bandwidth requirement. Itis shown, however, thatthe heap exhibits

littlelocality,and thereforecaches will likelybe necessary to achieve truly high

performance execution. Finally,itisshown thatPWAM sacrificeslittleof the WAM's

memory-referencing efficiencytoachieveparallelism.

3.1. Methodology

Memory reference behavior is measured with address-trace-driven memory simulators.

Traces arc produced with an I_.code emulator that executes object files produced by an

I.code assembler. The assembler translates Prolog compiler output. These tools are

summarized in Table 3-I and i11ustrated in Figure 3-1. The tools run on the Stanford

Emulation Laboratory VAX-111750, under Unix 7 4.3 BSD.

"/Unix is a Trademark of Bell Laboratories.

68

too__!
compiler
assembler
emulator

simulators

]nvut outvut implementation

Prolog source I._ode assembler Prolog
I..codeassembler binaryobject LEX/YACC

binaryobject tracefile C
traceftl_- statistics C

Table 3-1: Stanford Emulation Laboratory Prolog Tools

Prolog
source

PLM compiler/
Stanford optimizer

#
assembler I

l emulat°r [

V
I trace

high-level
memory
simulator

Figure 3-1:

stack
buffer
simulator

ooo
cache
simulator

÷ +
Prolog Memory Performance Measurement Methodology

° 69

3.1.1. Compiler

The compiler is a modified version of the UC Berkeley PLM compiler [Van Roy 84].

The compiler,writtenin Prolog,isabout 2900 source lines.The modifications,listed

below, were introduced for another study [Tick 85"],but do not significantlyaffectthe

bcnchrnarks measured here. Refer toTick [Tick 86] for a complete descriptionof the

optimizations.

• removal of cdr-codlng

calf--codingwas not deemed a significantattributeof the architectureforthe
bcnclun_ks considered.

* static-sizedenvironments

environment trimming was removed tosimplifythe architecture.

• increased number of registers

16 registerswere implemented as opposed to 8 in the PLM. Of the

benchmarks considered in thisdissertation,only CHAT isaffectedby the

increase in registers,although not significantly['Mulder 87a]. Since

variable-sizedchoice points are used, as in the WANt, increasing the

number of registersdoes not increasechoice point overheads, as in the
PLM.

• arithmetic instructions

arithmeticand other primitiveoperations,e.g.,va=/l, have been lifted

from built-inpredicatesto the instructionset. This optimizationdoes not

•significantlyaffectthe benchmarks studiedhere.

• conditional branches

a peephole optimization was introduced wherein under certain
circumstances, simple built-in conditionals, e.g., >/2, can be moved up

into the head of a clause. If a conditional can be moved up in front of
choice Point creation, it is replaced with a conditional branch.

Subscqucndy, if the choice point creation meets a cut, both axe removed.
This optimization does not significandy affect the benchmarks studied here.

• incremental indexing

this type of indexing is a slight modification of the method outlined by

Warren [Warren 83a], whereby the number of branches is reduced. One
measure of the effectivenessof an indexing method is the ratio of

t=y...me_eZse to try indexing instructions,try is an unconditional

branch,whereas t=y._.me_else isnot. Without incrementalindexing,the

ratioisabout 3:I [Dobry 85],whereas with incrementalindcxing,thisratio
isabout 25:1.

70 o

3.1.2. Assembler

The assembler is written in C around a LEX/YACC [I.esk, Johnson] parser of about

1000 source lines. The function of the assembler is to transform the symbolic

intermediate code generated by the compiler into an object image which is easily

interpreted by the emulator. The advantage of having the emulator read an object image

is the significantly reduced time in loading executable programs.

3.1.3. Emulator

The Prolog emulator, used to measure the memory performance of benchmark

programs, is implemented in C. Arbitrarily large programs can be emulated (within the

UNIX address space limits). The emulator kernel is about 2000 source Lines with

another 3000 source lines of support code. The emulator kernel consists of a single

large function wherein each intermediatelevel instructionis implemented. Primitive

procedures not transformed by the compiler arc dynamically interpretedin C. Notably,

input primitives are implemented in LEX/YACC. A side effectof executing the

program isthe production of a memory referencetracefile.Both data and instruction

references can be traced. An emulator option is procedure prof'ding,useful in

determining Prolog program hot spots. Memory references made by primitive

procedures axe counted as other references;however, theseprimitivesare not restricted

to using the state registers of the WAM model. The assumption is that these primitives

would be microcoded and the required temporary registers would be available. The

emulator also has primitive debugging capabilities. The code space can be displayed

through a disassemblcr and a single break point can be set. Memory areas and terms

can be displayed symbolically. The emulator. (with tracing off) runs at 3900 LIPS for

the "naive reverse" benchmark.

The emulator has alternative definitions for certain operations, allowing emulation of

Lcode, the Prolog C_s (including the split stack model and ideal indexing), and

shadow register architectures. WAM instructio0s are emulated in close correspondence

to the detailed semantics given by Warren [Warren 83a]. Common Lcode operations

which lend themselves to alternative semantics include general unification, cut,

indexing instructions, and built-ins. The emulator implementation of these operations

are described in detail in Tick [Tick 87a].

71

3.1.4. Simulators

The memory simulators are C programs that simulate various parameterized local

memories driven by trace references. The simulators are summarized in Table 3-2 and

described in detail in the next chapters. Note that all memory simulations were

conducted with a "cold start," i.e., measurements were taken beginning with the first

instruction of each benchmark program, assuming the local memory was initially

empty.

simulator

choice point buffer
stack buffer

env stack buffer

copyback cache
"smart' cache

write-through cache
hybrid cache
instruction buffer

multiprocessor caches

Table 3-2:

references, ca ptu red

data (choice points)

data (choice points and environments)
data (environments)
data and/or instructions

dam

dam
data

instructions

data

Local Memory Simulators

3.2. Benchmarks

The four Prolog benchmark programs studied in this dissertation are the CHAT English

language parser, the Berkeley PLM Prolog compiler, the Quintus Prolog compiler

(QC1), and the Intuitionist.ic Logic Interpreter (ILl). Two compilers were included

because they cha?acterize different programming styles, as described below. CHAT is a

database query system written by D. H. D. Warren and L. Periera [Warren 81]. Only

the front-end parser is used as a benchmark here. The PLM benchmark (not to be

confused with the PLM machine) is a slightly modified version of the PLM Prolog

compiler, written by P. Van Roy. This compiler does clause and procedure (indexing)

compilation. The QC1 benchmark is the Quintus Computer Systems Inc. clause

compiler, written by Warren. Neither compiler benchmark generates code -- they stop

after producing an internal form of WAM code, and both are tested with different input

data. ILI, the Intuitional Logic Interpreter, is a natural deduction theorem prover

written by S. Haridi.

CHAT, originally written in DEC-IO Prolog, has a simple, pure style, being derived

72

from grammar rules. PLM, originally written in C-Prolog, has the most complex style,

using disjunction and conditionals extensively. PLM originally included code with side

effects: an intelligent backtracking register allocator and a garbage collector. The

register allocator was retained, by implementing a simplified record primitive,

because it has a significant effect on the measurements. The garbage collector was

removed. QC1, originally written in Quintus Prolog, has a cleaner style than PLM.

QC1 was written to take fulI advantage of indexing whereas PLM was not. ILL

originally written in IBM-370 Prolog, is the shortest program of the set, being an

inte.rpret_r. It is pure code, relying on Prolog unification and call to do meta-lev¢l

reduction.

With only superficial knowledge of the programs, it was expected that CHAT would

display the characteristics of a highly nondeterministic program: much backtracking,

using choice points and writing environments which axe never read because of failure.

PLM and QC1 were expected to display characteristics of highly deterministic code:

little deep backtracking and more use of the heap. ILl was expected to display

characteristics of a recta-level interpreter:, much heap and pdl usage. Not all of these

predictions are accurate, as is discussed in the following sections.

oro_ram CHAT PLM QC1 ILI mean
static
source lines 850 1238 1040 316

procedures 157 139 133 51
clauses 500 383 576 141

Lcode insmactions 6439 8694 8269 4478

c_auses/procedure 3.18 2.76 4.33 2.76 325

instructions/clause 12.9 22.7 14.4 31.7 20.4
instructions/procedure 41.5 62.5 62.2 87.8 63.5

dynamic
procedure invocations 47677 36442 41858 17870
Lcode instructions 587024 616053 674537 283750
instructions/invocation 12.3 16.9 16.1 15.9

data references 1347671 1530648 1426098 674013
instruction references 430715 376236 499043 178908

data ref/instr ref 3.13 4,07 2.86 3.77

data ref/instr (a_ct) 2.30 2.48 2.11 2.38

instr ref/instr (_i) 0.734 0.611 0.740 0.631

' Table 3-3: Summary of Prolog Benchmarks' Characteristics

3.46

2.32

0.679

73

The benchmarks' characteristicsare summarized in Table 3-3. The ratios arc

approximate, e.g.,clauses/procedureiscalculatedas the number of clausesdivided by

the number of procedures. The mean ratiosand all mean statisticspresented in this

thesisarc calculatedby weighing each benchmark equally. Staticmeasures give an

indicationof program size,complexity, and consistency. Matsumoto [Ma_sumoto

85] studied15 largeProlog benchmarks and found similarstaticcharacteristics.

Dynamic measures give high-levelexecution characteristics,e.g.,dam and instruction

referencesper instruction.A reference is a 32 bit word accessed from/to memory.

Register-to-registeru'a.nsfersare not considered references.Instructionreferencesare

calculatedassuming byte encoded formats (seeSection 3.3.2).In the queueing models

of subsequent chapters,the statistic

= 3.0 mean referencesper WAM instruction8

is frequentlyused. iJ = _Jr+ _w = _)d+ _)icorresponding to reads and writesper

instructionand dam and instructionreferencesper instruction.Huck ['Huck83] reports

means of 0.524 dam words referenced per instructionand 0.837 instructionwords

referenced per instructionfor FORTRAN on the IBNLr370. For Pascal/VS on the

IBM/370, he reports a mean of 0.84 data words referenced per instruction. For

FORTRAN on theVAX 11/780,he reportsa mean of 1.31instructionwords referenced

per instruction.These resultsconfirm thattheWAM instructionsetismore potentand

more tightlyencoded than a conventionalinstructionset.

3.3. WAM Referencing Characteristics

3.3.1. Data Referencing

Memory use statisticsarc now presented for the benchmarks, assuming a monolithic

memory of sufficientsizeto containthe entirestack,heap, trail,pdl,and code space of

the Prolog machine model. Table 3-4 shows the maximum dynamic c.xtentof each data

area. The PLM garbage collectionfacilitywas turnedoff,accounting for the runaway

heap. The other programs do not have thisproblem because they do not createlarge

structures(recallQCI is a clause compiler). As hypothesized,ILl makes significant

8Throughout the remainder of the dissertation,conclusionsdrawn about the "WAM" architectureare
based on measurements taken of the Lcode architecture, a close variant of the WAM, described in Section
2.2.4.

74

use of the heap m the heap grows about threetimes largerthan the stack. Notice that

general unification,which uses the pdl as a callstack (withthreeword frames) does not

deeply rccursefor any of these benchmaxks.

bench ma rk stack , heap trail pdl
1845 882 258 6

1577 20013 2628 6
1571 2675 590 6

423 1263 84 3

RuntirneDataAreas inWords

CHAT
PLM

ILI

Table 3-4:

Table 3-5 shows memory data referencestatisticsbroken down by area and by t/pc.

The stack references are categorizedas choice point (cp) or envixonmcnt (env). On

average the benchmarks do 13% heap referencing and very littletrailand pdl

referencing.Read to wrhc ratiosdiffersignificantlyamong areas. Heap referencesare

about 2:I reads to writes,except for CHAT which does the leastheap referencing.

CHAT does more heap writesthan reads,attributedtodeep backtracking. Choice point

referencesare consistentlyabout 1:I reads to writes,indicatingthatmost choice points

axerestored atleastonce. Environment referencesare about 1:2 reads to writesexcept

for QCI, which has a closerratio. These ratiosindicatethatmost environments arc

allocatedand never read because of failure.

ILl shows the greatestpercentage of heap referencing,as expected of an interpreter.As

a r_sultof shallow backtracking,PLM shows the greatestpercentage of choice point

referencing,as expected of a program writtenwithout indexing in mind. CHAT shows

the greatest Percentage of trailreferencing,by a wide margin, as expected of a

nondetcrminatc program. Intcrcstingly,CHAT shows the le_t pcrccntagc of choice

point referencing,indicatingthatcvcn for well-writtendeterminateprograms, such as

QCI, shallow backtrackingdominates Prol0g referencingcharacteristics.

Not(: that the envixonrncnt allocate instruction,as implemented in the Lcode

emulator, writesfour words of book.keeping information. Warren claims thiscan be

reduced totwo words ['Warren83a] atthe costof impacting otherinstructions;however,

four words of bookkeeping informationismore appropriatefor modeling realsystems

(e.g.,PLM and PSI-I'I).The data in Table 3-5 arc summarized in Figure 3-2, which

shows the data areasby percentage forthc mean of allbenchmarks.

• 75

area read % write % total %

cp 348191 56.4 268918 .43.6 617109 45.8
¢nv 132616 35.2 244130 64.8 376746 28.0

heap 109909 45.7 130796 54.3 240705 17.8
51082 50.0 51082 50.0 102164 7.6

pdl 545......!49._..! 5496 50.2 10947 0.8
total 647249 48.0 700422 52.0 1347671 100.0

CHAT Data Referencing Profile

area read % write % total %

cp 494678 53.6 428111 46.4 922789 60.3
env 92185 34.7 173151 65.3 265336 17.3

heap 202019 69.5 88755 30.5 290774 19.0
trail 14151 50.0 14156 50.0 28307 1.9

pdl 966__.99 41..__22 13773 58.__88 23442 1.5
total 812702 53.1 717946 46.9 - 1530648 100.0

PLM Data Referencing Profile

area read % write % total %

cp 413119 56.8 314556 43.2 727675 51.0
env 150061 42.4 203864 57.6 353925 24.8

heap 184016 65.4 97166 34.6 281182 19.7
gN1 22685 50.0 22685. 50.0 45370 3.2

pdl 8859 49._...44 9087 50._..66 17946 1..._!
total 778740 54.6 647358 45.4 14260982 100.0

QK]I Data Referencing Profile

area read % write % total %

cp 215406 58.9 150382 41.1 365788 54.3
env 58638 39.4 90062 60.6 148700 22.1

heap 90146 63.6 51602 36,4 141748 21.0
=_1 4568 49.8 4599 50.2 9167 1.3

tx:ll 430.__..5550.0 4305 50.0 8610 1._!
total 373063 55.3 300950 44.7 674013 100.0

ILI Data Referencing Profile

Table 3-5: Data Referencing Characteristics of Benchmarks

76

Approximately 47% of I.code data references are writes. Huck [Huck 83] reports that

both IBM/370 and VAX Fortran programs display approximately 18% data writes.

Mulder [Muldcr 87b] reports approximately 25% data writes for Pascal programs,

independent of architecture. The increased Lcode write traffic is attributed to setting up

for backtracking, failure and structure copying. The high percentage of choice point

writes is due to the method used to implement backtracking. As mentioned above, the

high percentage of environment writes is an indirect result of failure. The high

percentage of heap writes is caused by the policy of structure copying (c.L, structure

sharing).

60

50

4O

"" 30C

e, 20

10

[] write

cp env heap trail pdl

Figure 3-2: Data References By Area

The high-level memory simulator collects the following statistics. For each of these

statistics, frequency distributions are shown for each benchmark as well as the average

of the benchmarks. Note that the total area under each dis_bution is one. The mean

and 95% quantile of the mean distributions are summarized in Table 3-6. The area

under each distribution to the left of the 95% quantile sums to 0.95.

* object size

• choice point size -- A choice point consists of an entry indicating its

size, entries corresponding to the values of 6 state registers, and the

parameters being passed, taken from the temporary registers. Thus
the minimum choice point size is 7 words, corresponding to a

77

procedure with no arguments, Choice point size is sampled for each

choice point reference.

• environment size -- An environment consists of an entry indicating

its size and entries corresponding to the values of three state registers

and the clause's permanent variables. Thus the minimum
environment size is four words, corresponding to a procedure with no

permanent variables. Environment size is sampled for each reference
to the curr_nt environment. The sizes of deep environments

referenced during dereferencing are not counted.

,, reference depth -- Note that this statistic is measured for read, write, and

total references.

• choice point depth -- This statistic is sampled for each choice point
reference. It is the distance from the reference to the top of stack.

Reference depths of less than 7 words axe guaranteed to reference a

choice point on the top of stack. The read depth indicates the type of
backtracking because most choice point read references are generated

during procedure failure. Shallow backtracking is evident when the

choice point read depth is small. Large read depths imply deep

backtracking.

• environment depth m This statistic is sampled for each
environment reference. It is the distance from the reference to the

top of stack. Reference depths of less than four words are guaranteed
to reference an environment on the top of stack. Environment depth

indicates the proport/on of references to deep environments, i.e.,
environments hidden by choice points.

• heap depth -- Sampled for each heap reference, this is the distance

from the reference to the top of heap. Heap depth indicates the

locality of heap references.

• reset depth

• choice point reset depth m This statistic is sampled for each

instruction which resets the current choice point. It is the distance

from the top of stack after resetting the choice point, to the previous
top of stack. Recall that the top of stack is defined as the topmost

environment or choice point. Deallocating choice points may or may
not affect the top of stack. This statistic is a measure of stack locality

and type of backtracking. Large reset depths indicate deep
backtracking. Zero reset depth often corresponds to cuts.

• environment reset depth -- This stadsdc is sampled for each
instruction which resets the current environment, namely

deallocate and fail. It is the distance from the top of stack

after resetting the envh:onment, to the previous top of stack. A large

reset depth signifies that a series of environments has been popped
from the stack, i.e., nested determinate procedure calls have

terminated (either successfully or otherwise). Zero reset depth

signifies termination of a nondeterminate procedure call, i.e., one that
left at least one choice point on the stack.

78

• heap reset depth -- This statistic is sampled for each failure. It is
the distance from the top of heap after failure to the previous top of

heap. Recall that during failure, the heap pointer, _, is reset to the

heap backtrack pointer, _. This statistic indicates the efficiency of
this automatic type of garbage collection. "Zero reset depth indicates

that no heap space has been reclaimed.

• deference chain length -- This statistic is sampled for each dercfercnce

operation executed by an instruction or built-in procedure. Recall that the
I.,code architecture may bind a variable to an object by creating a pointer
from the variable to the object. Binding a variable to another variable may

result in a double pointer chain and so forth. The dcrcfercnc¢ chain length
is the number of memory references needed to fully dcrefercncc a variable.

Zero lengthindicatesthatthe variableisbound toan immediate value.

statistic area mean 95%1"

object size cp 11.0words 13
cnv 9.3 15

read depth cp 10.8 30
env 22.1 64

heap 345 > 1200

write depth cp 5.0 10
cnv 9.7 29

heap 86.8 > 120

total depth cp 8.2 21
env 14.2 40

heap 261.5 >1200

reset depth cp
env

heap

'frefersto95% quanule

Table 3-6:

39.6 55

17.7 75
17.9 50

Summary of High-level Prolog Memory Statistics

Figures 3-3 and 3-4 show distributions of stack object size. The maximum size choice

point is 21 words, generated for the nondeterminate procedure with the greatest number

of arguments. The mean size is 11.0 words, and so a nondeterminatc procedure

contains an average of 4.0 arguments. The 95% quantile is 13 words. 98.0% of all

dynamically created choice points are less than 16 words long (hold fewer than 9

arguments). The PLM architecture constrains choice points to be fixed at 15 words

this upper bound appears to be a good choice. CHAT procedures have more arguments

on the average than the other benchmarks because of the method of translation from

grammar rules to simple clauses.

79

0.8 l

0.7
0.6
0.5
0.4

0.3
0.2
0.1
0.0

0.870.7
0.6

_HAI

10 11 12 13 14 15 16 17 18

PLM

0.5
0.4
0.3
0.2
0.1
0.0

!
0.8
0.7
0.6
0.5.
0.4-
0.3 .
0.2.
0.1
0.0

061
0.5
0.4
0.3
0.2
0.1
0.0

0.8 -
0.7'.
0.6.
0.5-
0.4.
0.3.
0.2.
0.1.
0.0

8 9 10 11 12 13

_(.;1

_:.:::__ ,,'.'.'._-".' - _::.....

8 9 1011121314

m _iii!_ --

8 9 1011

ILl

m-e-an

__:;-:."_

8 9 1011 12 1314 15 16 1718

Figure 3-3: Choice Point Size Frequency Distributions (words)

8O

0o4--

0.3
I

0.2

0.1

0.0

0.4-

0.3-

0.2

I
o.I]

I
0.0

0.4-

0.3-

CB_T.._

I

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

PLM

, i ,,i , • , i ,n

0.2

0.1

0.0

o.4-_

0.3

i

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

0C1

0.20.1 _

0.0 0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

ILL_

°"70.3

0.2

0.1 _.
0.0

maan

0 1 2 3 4 5 6 7 8 910 12 14 16 18 20

Figure 3-4: Environment Size Frequency Distributions (words)

81

The maximum size environmentis 24 words, generated for the procedure with the

greatest number of permanent variables. The mean size is 9.3 words, and so an

environment contains an average of 5.3 permanent variables. The 95% quantile is 15

words. The statistics indicate that the four bookkeeping words per environment occupy

43% of the environment on average. A 43% overhead is extremely high and skews the

read:write ratio for environment references. The ratio is skewed because the overhead

entries are always written in the allocate instruction, whereas the number of

subsequent environment references may be reduced by failure. CHAT procedures have

more permanent variables on the average than the other benchmarks because of the

complexity of the grammar rules.

Figure 3-5 shows the mean choice point reference depth distributions broken down into

read and write distributions. Most references are made near the top of stack. Depths 0

through 6, referring to a choice point at the top of stack, are unevenly distributed

because this information is not used uniformly. For instance most writes are made at a

depth of 6 because retry instructions overwrite the P pointer saved in entry 7 of the

current choice point. The maximum read depth is greater than 120 words and the long

read depth tail significantly influences the mean dismbution. Whereas the mean write

depth is 5.0 words, the mean read depth is 10.8 words. The mean choice point reference

depth is 8.2 words with 95% quantile at 21 words.

Figure 3-6 shows the mean environment reference depth distributions. The mean depth

is 14.2 words. More significant is a 95% quandle of 40 words indicating a long tail due

to referencing deep environments. Of the benchmarks measured, CHAT displays the

longest tail. The maximum depths of all the benchmarks exceed 120 words. The split

stack model was proposed as a partial solution to this problem.

An important statistic of a conventional architecture is call depth distribution, i.e., the

number of nested procedures entered before one is exited. Call depth indicates the

locality of the activation stack, possibly justifying a hardware stack buffer of the type

discussed in the next chapter. For Prolog, call depth is not an accurate statistic because

the environment stack (with or without choice points) is not a true stack. In a rote stack,

the current scope is always represented by the top frame in the stack. In Prolog, the

current scope may be represented by an environment buried in the stack because choice

points created after that environment freeze the stack. When a procedure call is made,

the caller's environment is not necessarily adjacent to the callee's environment (at the

top of stack). In addition, last call optimization can cause the caller's environment to be

replaced by the callee's environment. These two effects lessen the usefulness of the call

depth statistic.

82

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

m

m

0.14 _0

0.12

0.10

0.08

0.06

0.04

0.02
0.00 '

read depth

write depth

o
0.14 -_

0.12

0.10
g

0.08

0.06

0.04

0.02

0.00 -

!
4O

total depth

..... , , ,,

0

Figure 3-5:

m -- _ ,,
!
4O

Choice Point Depth Frequency Distributions (words)

!
80 w_rds

1
80 v_:ts

83

0.12

0.10

0.08
read depth

0.06

0.04

0,02

0,00

0.12

0.10

0.08

0.06

0.04

0.02

0.00

lo 2o = 40 so • %

_m

10 20 30 40

0.12

0.10

0.08

0.06

0.04

0.02

0.00

write depth

-!
total depth

I I I I I I

10 20 30 40 50 60

Environment Depth Frequency Distributions (words)Figure 3-6:

7b

84

The stack reference depth distributions given in Figures 3-5 and 3-6, however, give a

more general statistic useful for Prolog. These distributions indicate that a small

hardware stack buffer can capture much of the locality of choice point and (less of')

environment references. These statistics indicate that a single choice point buffer will

capture more references than any other buffer of comparable cost.

CHAT
PLM

qCl
ILl

read write total

mean 95%'[" mean 95% mean 95%
74.2 350 5.6 21 36.2 210

984.6 >1200 291.9 >120 772.8 >1200

259.5 900 43.3 >120 184.4 800

62.0 430 6.3 14 41.4 160

I" refers to 95% quantile

Table 3-7: Heap Reference Depth Statistics (in words)

Table 3-7 shows the mean and 95% quantile of the heap reference depth distributions of

the individual benchmarks, broken down by read, write, and total references. Table 3-6

gives the average statistics across the benchmarks; however, these and the mean

distributions are not accurate because, as seen in Table 3-7, the variance is very high.

The heap referencing distributions have long tails. PLM has extreme behavior with

respect to the other benchmarks (see Figure 3-4 also), partially because the specialized

PLM garbage collection facility was removed. The write depths are shallow because

most heap writes occur during structure creation, at the top of heap. Reads, however,

often occur deep t_ the heap, during unification of passed structure:,. The distribution

•statistics suggest that the high spatial locality e._ hlbited by writes can be exploited by

local memories that capture the top of heap. The write distribution statistics indicate

that a "smart" memory, which does not continually prefetch the top portion of the heap

(because it will be overwritten), can significantly reduce heap traffic.

Figure 3-7 shows the choice point reset depth distributions. The mean is 39.6 words

with 95% quantile at 55 words. The maximum reset depth is greater than 120 words.

CHAT differs from the other benchmarks because it has no cuts and therefore no zero

depths. Figure 3-8 shows the environment reset depth distributions. The mean is 17.7

words with 95% quantile at 75 words. The max,.mum reset depth is greater than 120

words. All these benchmarks have approximately equal zero reset depths. This

indicates the prevalence of shallow choice points contaminating the stack, even for

supposed determinate programs, such as QC1 (which, in fact, has the highest mean reset

depth of 21.5 words).

• 85

0.7

0.6

0.5'

0.4-

0.3

0.2-

0.1

8:9 o
0.6

0.5-
q

0.4
m

0.3"

0.2

0.1

8:£: o
0.6-

i

0.5 ".

0.4"

0.3-

0.2 _

0.1-
.

8:9_ o
0.6

0.5-

0.4-
0.3-

0.2-
.

0.1
0.0
0.7 -i o

0.6-

0.5J

0.4"

0.3
!

0.2-

0.1

0.0
0

Figure3-7:

I CHAT

I

2O 40 60

PLM

I

20 40 60

QC1

2O 40 6O

m I a
'20 4o

ILl

mean

20 40 6O
Choice Point Reset Depth Frequency Distributions (words)

86

0.5

0.4 --

0.3

0.2 --

0.1

0.0-
0

0.7-

0.6

0.5

0.4
a

0.3

0.2
0.1 --

0.0 - o

0.7-

0.6

0.5 -

0.4

0.3
i

0.2

0.1

0.0 _

o.7-_
0.6 -"

.=
0.5

a

0.4

0.3-
m

0.2_

0.1-
m

0.0

0.7-

0.6 --

0.5

0,4

0.3-

0.2-

0.1

40

I _ _ t • | • _

40

60

F'LlVt

_ _ . • | Hi ,, m . --

40

80

0

-- m

80

ILl

• . . . , i •
40

rn_Rn

0.0- • m . • !! I! !
o 40

Figure 3-8: Environment Reset Depth Frequency Distributions (words)

8O

87

Figure 3-9 shows the heap reset depth distributions. The mean is 17.9 words with 95%

quantil¢ at 50 words. Heap reset depth indicates the amount of heap space

automatically reclaimed during backtracking. On average, resetting the heap cleans up

only a small portion of the heap. Figure 3-9 indicates however that this behavior is

highly program dependent -- ILl and CHAT display instances of larger reclamations.

In comparison, consider that explicit Prolog garbage collection reclaims about 50% of

the heap on average [Znidarsic 87]. This statistic, however, is also highly program

dependent..

Figu__ 3-10 shows the dereferenc¢ chain length distribution for the combined

benchmarks. The mean is 0.32 references. The PLM benchmark has a procedure that

unravels terms in the input source program. This procedure can produce arbitrarily long

dereference chains, e.g., unraveling a term nested ten levels deep produces a chain of

length ten. Since deeply nested Prolog source terms are rare, this benchmark rarely

produces long dereference chains. These results indicate that optimizations to further

shorten pointer chains are not needed.

3.3.2. Instruction Referencing

Instruction bandwidth requirements are measured in several different ways in this

section. The variation is due to the uncertainty of which set of instruction formats is

mostappropriate. An instruction is encoded into an opcode,format, and operands. The

opcode and format are not clearly separated in the Lcod¢ instruction set because there is

little orthogonaliry, i.e., reuse of the same format among different opcodes. Instructions

can be encoded with a fixed (e.g., IBM/370) or variable (e.g., VAX/I I) number of

operands. In addition, the instruction may be.aligned on word, halfword, byte, or bit

boundaries. These storage units are called instruction syllables. Bit alignment allows

tight encoding using log 2 encoding schemes as in ADEPT [Wakefield 82]. The size and

placement of immediate constants and branch offsets and addresses also offer

variability of design. These parameters are difficult to design without analysis of many

large programs, where the mean and peak numbers of interned constants (in the symbol

table) and accurate branch distance distributions can be calculated. Because only a

small set of benchmarks is analyzed in this dissertation, no definitive statement is made

concerning the "best" instruction formats. Instead, several alternatives are presented.

Table B-1 in Appendix B summarizes the sizes of each Lcode instruction. In this table,

a word and byte count-is given for each instruction. Instructions with two byte (or

88 o

0.3

0.2

0.1

0.3
PLM

0.1

8:_-7 ,o 2o 30 4o _ _o "_

o.3 _ QC1

0.2

0.1

0.0 " _ ' ',o 2o 3o _ so _o

0.4 --_0.3
ILl

0.1

0.0 _ '
I,..11 - •
30 40 50 7010 20

mean

i
[I I "1 I_o 2o 3o 4o _o _ 7o0.0

Figure 3-9: Heap Reset Depth Frequency Distributions (words)

89

¢)

e"

_o

O.

80-

60

4O

2O

67

!

32.3

"_N::_""__ 0.725

0 1 >12

number of references

Figure 3-10: Dereferenc¢ Chain Length Distribution

word) counts indicate local branch target opermad(s) which can be encoded as either one

or two byte offsets. Figure 3-I I shows the distribution of instruction size (assuming

one byte offsets) for all instructions referenced during execution of the benchmarks.

The mean distribution is calculated weighing each benchmark equally. The mean of the

distribution is 2.6 bytes. Huck [Muck 83] reports mean instruction lengths for typical

FORTRAN programs of 3.35 bytes on an IBM/B70, and 5.23 bytes on a VAX 11/780.

Instruction bandwidth is measured for the benchmarks in the following seven ways.

1. word boundaries, halfword offset (from P) for local branch target

2. word boundaries, byte offset

3. byte boundaries, halfword offset

4. byte boundaries, 8/16 offset

5. byte boundaries, byte offset

6. bit boundaries, 8/16 offset

7. bit boundaries, 8/16 offset, log 2 encoding of permanent register specifiers

(these specifiers can be decoded because the fixed size of each
environment is known).

The local branch offset in these encodings is either a byte, halfword, or "8/16" (a

combination of both). The 8/16 encoding uses whichever offset is appropriate for an

90

5O

40

3O
t_

¢-

20

,,.,,

10

0
I
1

100"

0

_" 80"

a)_ 60

e-

_ 40

r,.,: ¢_ 20

w

2 3 4 5 6 7 8 9 10

instruction size in bytes

89.9

9
p'_,:_:i_i 1.2

1 2 3
instruction size in wQrds

Figure 3-II: Instruction Format Distribution

individual instruction. Thus byte offset encoding is somewhat opdrrdstic and halfword

offset encoding is somewhat pessimisdc. Table 3-8 lists the relative instruction

reference counts of the seven encoding schemes. These counts are relative to the fL,'st

encoding with word boundaries and halfword offsets. As indicated, byte encoding

(halfword offset) generates about 63% of the instruction traffic of word encoding

(halfword offset). Calculated over all references (including data), traffic is reduced by

about 8%. This savings, representing the added efficiency of using smaller syllables, is

sigmficant compared to that of other encoding attributes.

instr branch

bound offset CHAT PLM QC1 ILI mean
1. word 16 1.0 1.0 1.0 1.0 1.0

2. word 8 0.977 0.982 0.958 0.981 0.975

3. byte 16 0.654 0.597 0.652 0.603 0.627

4. byte 8/16 0.627 0.564 0.608 0.572 0.593
5. byte 8 0.626 0.561 0.604 0.567 0.590
6. bit 8/16 0.584 0.501 0.558 0.520 0.541

7. bid" 8/16 0.550 0.469 0.525 0.478 0.506

1"log 2 encoding

Table 3-8: Instruction References for Benchmarks (per Encoding 1)

/
91 •

The savings in instruct.ion traffic generated by the 8/16 offset byte encoding over the

pessimistic (halfword offset) byte encoding is about 5%. This is a savings of about 1%

for the mean total references. The cost of the more efficient encoding is a more

complex assembler and two versions (one with byte offsets, one with halfword offsets)

of each 1ocalbranch instruction. ,

The savings in instruction traffic generatgd by the standard bit encoding over the byte

encoding isabout 9%. Log 2 encoding of permanent registerspecifierssaves about 6%

over standard bit encoding. Again, calculatedover allreferences,the savings arc

insignificant.Mitchell[Mitchell86] gives similarresultsfor Pascal programs. He

reportsthata Pascal DCA with bitencoded identifierssaves 15% of the instruction

u'afficover byte encoding. The savingsforProlog are lower because the instructionset

isnot as orthogonalas DCAs based on arithmeticoperations.

3.4. CIF Referencing Characteristics

In this section, measurements of CIF attributes are presented and compared to WAM

measurements. Recall that in Chapter 2, three Prolog CIFs are introduced:

* naive CIF m this model, based on a frame stack, assumes a simple host

that requires a memory access for every data reference.

* traditional CIF -- this model, also based on a frame stack, assumes a

complex host that requires no memory accesses to reference frames in the '
stack.

• register-based CIF -- thismodel, based on separate choice point and

environment stacks,rcquh-esno memory accesses to referencethe register
SeL

Table 3-9 shows the relativeinstructionand data referencesgenerated by these CIF

models forthc benchmarks studied.The traditionalCIF, because itgcncratssthe lowest

bandwidth of the models considered,isused as the baselineof thiscomparison, i.e.,all

referencecounts arc given reladve tothetraditionalCIF. Notes on Table 3-9 follow.

• The traditionalCIF assumes tightlyencoded instructionson bitboundaries.

All frame variablespecifiersare log2 encoded. Recall thatthe CIFs use

variable length get./put l±st/structure instractions with n

opcrands, where n is the ariD' of the structure. This obviates un£fy

instructions,but requh'esan additionalthreebittag per opcrand, indicating

how the operand istobc processed (e.g.,as variablc,value,constant,etc.).

This alsoobviatcsthenccd forread/writemode inthe image architecture.

• The naive CIF isencoded identicallyto thetraditionalCIF.

• The register-based CIF assumes similarly encoded instructions; however,

only permanent variable specifiers are log 2 encoded. Register specifiers

require four bits.

• Standard (single argument) indexing, a trail test, and a single stack am
assumed. These attributes are subsequently analyzed individually.

t

Whereas, for the benchmarks measured, the register-based CIF ins_'ucdon bandwidth

can be as much as 19% greater than the traditional CIF, data bandwidth can be as much

as 330% greater. This difference indicates the relative importance of the insu'uction

encoding and unlimited stack buffer assumptions in the traditional CIF. The register-

based CIF can decrease the worst-case data referencing of the naive model by only

about 14%, compared to the 79% savings of the traditional CIF.

Throughout the remainder of this section, the register-based CIF (simply called the

"CIF') Is compared in greater detail with the WANt. Tables 3-10, 3-11, and 3-12 show

the WAM reference counts relative to those of the CIF, for various attributes. Each

attribute is measured independendy of the others.

Table 3-10 compares the instruct.ion traffic of a standard byte encoded WAM (with byte

local branch offsets) with the tightly encoded CIF. The table gives the number of

WAM ins_uction bytes referenced per CIF instruction byte. As indicated, the WAN[

encoding causes from 19% to 29% more instruction traffic than the CIF encoding. For

this comparison, both use standard (single argument) indexing.

Table 3-11 compares the data and inst,.Let.ion traffic of WAM (single argumer_t)

indexing with CIF ide_ indexing. Also given is the traffic [o: a naive architecture with

no indexing. The t.ablc gives the number of memory bytes referenced per CIF memory

byte. For this comparison, all the architectures use sim.ilarly tightly encoded

instructions. As indicated, single argument indexing generates from 25% to 50% more

memory traffic than ideal indexing. Lack of indexing generates up to 120% more

traffic than ideal indexing,

Table 3-12 compares the memory traffic devoted to (de)trailing (i.e., trailing and

dctrailing) for the WAM (with a trail test) and the CIF (with both a trail test and an

inverse trail test). Also given is the traffic for a naive architecture with nc trail test._.

Without a trail test, up to three times the memory traffic is generated during (de)trailing.

The inverse trail test saves from 1% to 24% of the (de)trailing traffic generated with a

trail test. Since (de)trailing accounts for a small percentage (on average less than 5%)

of all memory references, this attribute reduces memory references by very little.

93

instr CHAT PLM QCI ILI

traditional CIF 1.00 1.00 1.00 1.00

naive CIF 1.00 1.00 1.00 1.00

register-based CIF 1.19 1.18 1.14 1.17

data CHAT PLM QC1 ILI

traditional CIF 1.00 1.00 1.00 1.00
naive CIF 4.64 4.83 4.74 4.65

register-based CIF 3.73 4.34 4.03 4.09

Table 3-9: Comparison Between Prolog CIF Memory Bandwidths

CHAT PLM OC1 ILl
CIF 1.00 1.00 1.00 1.00

WAMt 1.19 1.29 1.21 1.25

t assuming standard indexing

Table 3-10: WAM Instruction Bytes Referenced (per CIF)

CHAT PLM QC1 ILI

CIF total - 1.00 1.00 1.00 1.00
WAM data 1.30 1.24 1.55 1.31

instrt 1.21 1.28 1.39 1.31

total 1.28 1.25 1.51 1.31

naive:l: data 1.77 1.35 2.37 1.57

instrt 1.49 1.36 1.69 1.53
total 1.71 1.35 2.21 1.56

t assuming bit encoding
_: no indexing

Table 3-11: Standard (WAM) Indexing Memory Bytes Referenced (per CIF)

CIF

WAMI"
naive_

t trail test only
_t trail all

Table 3-12:

CHAT PLM QC1 ILI
1.00 1.00 1.00 1.00

1.01 1.16 1.24 1.08
1.53 2.43 2.49 3.07

WAM (De)trailing Memory Bytes Referenced (perCIF)

94

Table 3-13 compares the maximum stack depths and data reference counts of the single

and split-stackmodels, relativetothe singlestackmodel. The register-basedCIF model

wi_ standard indexing isassumed here. Since the maximum depths of both the E-stack

and B-stack may not occur simultaneously,comparison with the singlestackdepth must

be made carefully. In most cases however, splittingthe stack decreases the absolute

stackdepth.

The split-stackalways makes more data referencesthan the singlestack,by 1.5% to

2.5%. This isbecause management of two stacksrequiresan additionalstateregister,

C, as discussed in Section2.2.4.4.References to C itselfam not counted (justas with B

in the singlestack model), but management of two stacksrequiressaving/restoringC

from memory.

Table 3-14 compares the high-levelmemory characteristicswhich differbetween the

singleand split-stackmodels. As expected,the splitstackmodel lessensobjectdepth.

Notice the 95% quantileof environment depth has been halved to 18 words.

CHAT PLM QC1 ILI

depth(B-stack) 845 997 599 210

dcpth('E-stack) 1007 600 632 166

depth (single) 1845 1577 1571 423
% 100 101 78 89

data(single)
data(split)

Table 3-13:

1.000 1,000 1.000 1.000

1.015 1.025 1.018 1.023

Data Referencing of Single and Split Stacks (Per Single)

_tatistic
single stack split stack

mean 95%_" mean 95%
cp depth 8.2
env depth 14.2

cp reset depth 39.6

env reset depth 17.7

t refers to 95% quantile

Table 3-14:

21 5.6 11
40 7.0 18

55 42.1 55
75 14.6 51

Comparison Between Single and Split Stack Models

95

3.5. PWAM Referencing Characteristics

In this section, the Rcs_cted-AND Parallel Prolog architecture (PWAM) tools and the

benchmark studied in this dissertation are described. High-level memory referencing

characteristics of the RAP-Prolog benchmark are then presented.

The PWAM tools are illustrated in Figure 3-12 [Hermenegildo 87a]. PWAM traces

differ from the WAM traces previously described in that each reference is marked with

a processor identifier. The PWAM emulator produces trace records in a round-robin

fashion as it emulates an instruction on each of multiple processors. References are not

time-stamped, so this method is not entirely accurate; however, since the PWAM

emulator time slice is one instruction, inaccuracies are not significant. The RAP-Prolog

benchmark studied is deterministic in the sense that the control flow of the program

cannot depend on the execution timing of the program.

The PWAM emulator uses the following control policies in addition to those outlined in

Section 2.3:

• When a parallel call is entered, i.e., the CGE condition evaluates'to true, the
goals are executed sequentially if all PEs are busy.

• The parent process of a parallel call waits for either all of its child

processes to succeed, or one of its child processes to fail

The simple parallel benchmark, Sderiv, measured in this dissertation is shown in Figure

3-13. The program is a synthetic variation of the symbolic differentiation program

given by Warren [Warren 77]. The original program has been modified by adding two

new differentiation rules which offer greater parallelism than the original rules. The

initial mode declaration states that the f'u'st two (input) arguments of the all3 predicate

are completely ground, and that the third (usually output) argument contains no shared

unbound variables. This declaration ensures that no checks are required in the CGEs.

Because the last body goals are placed in the CGEs, last call optimization cannot be

exploited; however, the lack of this optimization does not significantly affect the

memory referencing behavior of the program.

The Sderiv input datum is an irregular expression composed of summations of irregul_r

expressions. The summations are highly regular trees of additions, and are nicely split

by the first differentiation rule. The decomposition of the irregular expressions

represent a much finer grain size and higher communication.

96

__s PROLOG I

ource.__

RAP compiler

RAP emulator

__ trace
file

multi-cachesimulator I

Figure 3-12: RAP-Prolog Memory Performance Measurement Methodology

High-level characteristics of the Sderiv benchmark are presented in Table 3-15. The

dynamic statistics were collected during a simulation of four processing elements (PEs).

Instruction references were not measured; however, they have approximately the same

high-level characteristics as in the WAM (Table 3-3).

Table 3-16 compares the number of data words referenced by Sderiv executing

sequentially in the WAM and on PWAM multiprocessors with one to eight PEs. For

PWAM, the number of process management references increases steadily for Sderiv.

On eight PEs, the parallellsm exploited is so fine grained that management overheads

increase dramatically -- data references increase by 8%. This is mostly due to busy

waiting. The PWAM emulator is organized to force quickly succeeding parallel

processes within a CGE to wait for slower processes to complete. This busy waiting

97

:- mode d(g, g, i).

sderiv :-expr(X), d(X, x, Y).

d (A+B+C+D, X, DA+DB+DC+DD) :- !,

(true I d(A,X, DA) & d(B,X, DB) & d(C,X, DC) & d(D,X, DD)) .

d(A*B+C*D, X, DA*B+A*DB+DC*D+C*DD) "- !,

(true I d(A,X, DA) & d(B,X,DB) & d(C,X, DC) & d(D,X, DD)).

d (U+V, X, DU+DV) :- !,

d (U-V, X, DU-DV) :- !,

d (U'V, X, DU*V+U*DV) :- !,

d(U/V, X, (DU*V-U*DV)/V^2) :- !,

d(U^N,X, DU*N*U^N!) :-[,

d (-U, x, -DU) :- !,

d (exp (U), X, exp (U) *DU) :- !,

d (log (U), X, DU/U) :- !,

d(X, X, i) :-!.

d(C, X, 0).

(true

(true

(true

(true

integer (N) ,

d (U, X, DU) .

d (U, X, DU) .

d(U,X, DU) .

d (U,X, DU).

i d(U,X, DU) & d(V,X, DV)) .

[d(U,X, DU) & d(V,X, DV)) .

d(U,X, DU) & d(V,X, DV)) .

I d(U,X, DU) & d(V,X, DV)) .

N1 is N-I,

value(((3*x + (4*exp(x^3)*log(x^2)) -2) /

(-(3*x) + 5/(exp(x^4)+2)))) .

expr (E+E-E*E/E*E/E) :-

value(F),

E = F+F+F+F+F+F+F+F.

Figure 3-13: RAP-Prolog Program Example: Sdcriv

entails continuously reading a process management flag to determine if all sibling

processes have completed. The memory bandwidth required by these extra reads can be

almost completely removed with local memories. In fact, the busy wait loops are odd

because they display 100% temporal locality, which skews the overall measure of

program locality. Discounting busy wait references, the low number of extra references

in comparison to the WAM is consistent with the results given by Herrnenegildo

[Hermenegildo 87a] and helps conf'mn the efficiency of the PWAM model.

Table 3-17 shows the Sderiv memory data reference statistics broken down by area and

by type. This data was collected for a simulation of four PEs. Although each process

references its own storage areas, the separate areas arc lumped together in Table 3-17.

98

Table 3-15:

Sderiv

324

Program
static
PWAM instructions

dynamic

procedure invocations 1494
PWAM instructions 34675

instructions/invocation 23.2
data references 87890

data ref/instr 2.53

Summary ofPWAM SderivBenchmark on FourFEz

Sderiv PEs data ref

WAM 1 74358

PWAM 1 85709
2 86180

4 87890
8 94922

Table 3-16: PWAM Sderiv Data Bandwidth Efficiency

The PWAM-specific storage areas include the Parcall Frames and Markers (marker) on

the stack, Goal Frames in the Goal Stack (goal), and Message Buffer (message) (refer to

Table 2-7). References to Parcall Frames are broken down into the local area (pf-local),

and the global area. The global area is further split into the Process Slots (pf-slot) and

the two semaphores (pf-lock). The profile is similar to the WAM benchmarks (Table

3-5). Less than 3% of the memory references are PWAM overheads, and most of these

are lock reads during busy waiting.

3.6. Summary

In this chapter, an empirical methodology is described for measuring the dynamic

memory-referencing characteristics of Prolog programs. This methodology consists of

a Prolog-to-Lcode compiler, Lcode assembler, Lcode instruction-set emulator, and

various memory simulators. A set of four Prolog benchmarks (CHAT, PLM, QC I, and

ILl) and one RAP-Prolog benchmark (Sdedv) are described. High-level memory-

referencing characteristics of the benchmarks, measured with the tools described, are

given. Characteristics of the WAM, Prolog CIFs, and PWAM architectures are

presented.

The WAM statistics indicate that even for well-written determinant Prolog programs,

99

area read % write % total %

cp 19062 49.3 19566 50.7 38628 43.9
env 10606 40.1 15866 59.9 26472 30.1

heap 8912 46.7 10182 50.3 19094 21.7
trail 0 0.0 1514 100.0 1514 1.7

pdl 0 0.0 0 0.0 0 0.0

pf-local 24 40.0 36 60.0 60 O. i
pf-slot 24 51.1 23 48.9 47 O. 1

pf-lock 1391 92.2 118 7.8 1509 1.7
marker 46 20.0 184 80.0 230 0.3

goal 168 50.0 168 50.0 336 0.4
message 0 0..._Q 0 0.....00 0 0....00
total 40233 45.8 47657 54.2 87890 I00.0

Table 3-17: PWAM Sderiv Data Referencing Characteristics on Four PEs

shallow backtracking dominates the Prolog data bandwidth requirement. The

referencing localities of objects on the stack and heap roughly indicate the relative

merits of different types of local data memories for reducing the memory bandwidth

requirement. 95% of all references to choice points land within the top 21 words of the

WAM stack. 95% of all references to environments land within the top 40 words of the

stack. It is shown that in a split stack architecture, 95% of all environment references

land within the top 18 words of the stack. For the heap, even the top 1200 words of the

heap do not always capture 95% of all heap references. From these high-level statistics,

choice point buffers, stack buffers, split stack buffers, and general data caches appear to

be viable alternatives for reducing memory traffic. Low-level memory-referencing

measurements of the benchmarks executing on these local data memories are presented

in the following chapters.

Several alternative WAM instruction encodings are considered in this chapter.

Measurements are presented indicating that byte encoding generates about 63% of the

instruction traffic of word encoding, all other encoding attributes being equal. Other

encoding attributes, such as branch offset size and bit encoding, do not reduce the

instruction bandwidth requirement as significantly.

High-level memory-referencing statistics of three (naive, traditional, and register-based)

Prolog CIFs are presented. The register-based CIF generates as much as 330% more

data traffic than the traditional CIF, yet only as much as 19% more instruction traffic,

indicating that the unlimited stack buffer assumptions in the traditional CIF far

outweigh its instruction encoding advantages. Compared to the naive model, the

lOO

register-based CIF reduces data traffic by about 14%, whereas the traditional CIF

achieves a 79% reduction in traffic. Measurements of more detailed CIF attributes are

presented for the register-based CIF, which corresponds most closely to the WAM.

Among these attributes, ideal indexing offers the greatest traffic reduction -- single

argument (WAM) indexing generates 25%-50% more memory traffic than ideal (CIF)

indexing. This result indicates that efforts to improve the WAM and its related

compiler technology should concentrate primarily on indexing. As is discussed in the

next chapter, poor indexing can alternatively be improved with hardware, in the form of

local memories.

The RAP-Prolog memory-referencing characteristics of the Sderiv benchmark are also

presented in this chapter. On a single processor, PWAM generates about 15% more

memory, references than the WAM. This overhead increases to 28% for eight

processors (where most of the overhead is due to busy waiting). These high-level

statistics indicate that PWAM does not sacrifice much of the WAM's efficiency to

achieve parallelism. Further measurements of Sderiv presented in Chapter 5 explore the

PWAM overheads in more detail.

lol

Chapter 4

Uniprocessor Memory Organizations

In this chapter, two-level memory hierarchies are defined and measurements are

presented and analyzed for sequential Prolog architectures. The first level consists of a

local memory. The second level consists of an interleaved main memory. Both

traditional local memory models, as well as models suited specifically to the Prolog

architectures previously introduced, are examined. Queueing models are used to

determine the main memory interleaving required to support the local memory

configurations. In the next chapter, these memory hierarchy designs are extended to

multiprocessor systems.

Local data memories include a choice point buffer, stack buffer, environment stack

buffer, copyback cache, and "smart" cache. Local instruction memories include an

instruction cache and look-ahea(t instruction buffer. In addition, combined

instruction/data copyback cache measurements are presented. Local memory

configurations are presented, consisting of a combination of these memories, ranging

from low cost/low performance to high cost/high performance systems. Local memory

performance measurements are given in terms of hit ratio, traffic ratio, copyback ratio,

and dirty line ratio. These measures allow comparison between the local memory

designs and supply the main memory queueing models with critical design parameters.

It is shown that small local buffers perform quite well B a 12 word single choice point

buffer redaces the memory data bandwidth requirement by 38%. Larger, sophisticated

local memories perform significantly better -- a 1024 word "smart" data cache reduces

the memory data bandwidth requirement by 93%.

The second-level main memory and memory bus are modeled, with asymptotic M/G/1

queueing models, for typical system configurations: a combined I/D cache, and a look-

ahead instruction buffer + stack buffer configuration. The measurements presented

indicate that although the stack buffer configuration can make more efficient use of an

interleaved main memory than can the cache, the cache performs better because it

captures heap references and code loops, which the stack and instruction buffers cannot

capture.

102

Both uniprocessor and shared memory multiprocessor architectures are studied in this

dissertation. For both of these host organizations, motivations are now given for

reducing, with local memory, the memory bandwidth requirement and the effective

memory latency. From the previous chapter, the benchmarks studied have an average

number of 3.0 words referenced per instruction executed. The average number of

instructions executed per "logical reference" is 15.0. Therefore to attain one MLIPS

(millions of logical inferences per second) average performance, or 15 MIPS (millions

of WAM instructions per second), 180 Mbytes/sec sustainable memory bandwidth is

required.

If a shared memory multiprocessor is necessary to deliver this performance, the

bandwidth requirement must still be satisfied by a single (possibly interleaved) main

memory if no local memory exists. In addition, multiprocessors have communication

overheads which imply an even greater bandwidth requirement. A main memory

suitable for symbolic processing applications must be large and therefore cost and

packaging constraints typically prevent it from having a fast access time. A suitably

interleaved memory, for instance, may achieve the bandwidth requirement under ideal

conditions. In general, however, contention between requests to the same main memory

module will reduce the deliverable bandwidth. Considering single bus interconnections,

current technology buses can deliver only a fraction of.the required bandwidth (e.g., the

current Sequent can deliver 32 Mbytes/sec peak bandwidth). Emerging technology

buses, however, may be able to deliver up to 200 Mbytes/sec peak bandwidth [Barney

87]; however, sustained bandwidth will be lower. These considerations indicate that the

target of one MLIPS will tax the bandwidth capabilities of single memory systems. The

;,_troduction of local memory can reduce the bandwidth requirement, allowing the

processor(s) to operate closer to their peak performances.

More important than the reduction in bandwidth requirement is the necessity to reduce

the memory latency, i.e., the delay in servicing a given memory request. With only a

single memory, each request requires the full access time of the memory. As previously

argued, large memory systems have slow access times, and therefore long latencies.

From the results of the previous chapter, about 40% of all memory references generated

by the WAM are data reads. Assuming that the processor must stall until a data read is

serviced, and assuming that the memory request rate of the processor is much higher

than the service rate of the memory, only about 60% of the target performance can be

achieved. Under the more optimistic assumption that a processor can sustain up to two

data reads on average before stalling, approximately 80% of the target performance can

103

be achieved, etc. The introduction of local memory can reduce the effective memory

latency, thereby allowing the processor(s) to operate closer to their peak performances.

4.1. Memory Model

The memory model, illustrated in Figure 4-1, consists of a single processing unit

making requests to a two-level memory hierarchy. The closest level to the CPU is a

local memory of limited capacity. The second level in the model is a slower main

memory of unlimited capacity. The local memories examined are queues, buffers, and

caches. Certain local memories capture only select types of references, accessing others

directly from main memory. These memories are managed with a copyback policy:

write references contained in the local memory are serviced there without immediately

updating main memory. Main memory, is later updated when the modified local

memory location (called a dirty location) is chosen for replacement.

In Section 5.3, local memories managed with a write-through policy are examined.

Write references are issued to both the local and main memories, thus keeping the two

consistent. In addition, a hybrid policy of copyback and write-through for different

types of requests is examined. As is discussed in Section 5.2 these local memories

solve coherency problems inherent to multiprocessors.

CPU
R local

memory

::

Rs main

memory

Figure 4-1: Uniprocessor Memory Model

For a given program, the processor issues R requests or references, broken down into

reads, P'r, and writes, R w. Requests are in units of words. The requests can also be

broken down into hits, Rh, and misses, R m, indicating whether the request is serviced

from local or main memory:

104

R = R r+ Rw = R h + R m-

In addition, read request misses, Rr, m, write request hits, Rw, h, etc., are defined. The

miss ratio, mr, is the fraction of requests that cannot be serviced from local memory.

Assuming a write-allocation policy, where write misses are loaded into the local

memory,

mr=Rm/R.

With a no-write-allocation policy, write misses do not contribute to the miss ratio,

Hit ratio is an alternative measure to miss ratio,

hr= 1-mr.

For a copyback local memory, the main memory traffic, R s, is the requests made to

main memory,

R s = (R m + C)B,

where C is the number of copyback requests and B is the size of blocks (in words)

transferred between main and local memory. For a write-through local memory, the

main memory traffic is

R s = Rr, mB + R w.

This is easily generalized for a hybrid local memory that copies back certain request

types and writes-through others.

The traffic ratio, tr, is the ratio of main memory traffic to local memory traffic. An

alternative definition is the ratio of the number of references serviced by the main

memory with local memory, to the number of references serviced by the main memory

without local memory.

tr=Rs/R.

The copyback ratio, cr, is the ratio of the copyback traffic (to main memory), to the

write traffic (to local memory),

105

cr = C*B / R w.

The dirty line ratio, dr, is the fraction of local memory replacements which require

copyback, i.e., the ratio of copybacks to misses,

dr=C/R m.

By definition, hit and dirty line ratios are less than one, whereas traffic and copyback

ratios can be greater than one. The latter can happen if the replacement granularity (a

block) is greater than one word (the reference size). Large blocks increase hit ratio by

virtue of prefetching sequential locations, i.e., exploiting "spatial locality. A well-

balanced model must have both high hit ratio and low traffic ratio (significantly less

than one if possible). The copyback ratio indicates the efficiency of the copyback

policy. A low (less than one) copyback policy is desirabie, although it is not critical if

the traffic ratio is low. A high copyback ratio indicates that a write-through policy is

possibly better. A low dirty line ratio is desirable, indicating that not much copyback

traffic is necessary.

In the remainder of this chapter, these statistics are measured for various local memory

models. The performance of configured models, e.g., a choice point buffer combined

with a instruction buffer, are calculated by combining the statistics of the singular

models in the following manner. Consider partitioning all memory references into an

exhaustive and mutually exclusive set of reference types. A reference type, in contrast

to a data type, corresponds to a storage area, e.g., the heap, trail, etc. When combining

local memory models which capture certain memory types, the following relations hold:

where Pr(j) is the fraction of references of type j. A reference type i that is not captured

by any local memory in the configuration, has hr i = 0 and tri = 1.

These statistics are then used to derive the main memory interleaving factor necessary

to increase memory bandwidth. An interleaved memory consists of m modules, where

each memory module can be accessed independently and multiple requests to the same

module are queued. For a sequential processor, as the number of modules is increased,

a local memory with a larger block size, B, can be accommodated. This can increase

local memory performance. For a multiprocessor, as the number of modules is

106

increased, contention at the modules between different processor requests is reduced,

thus increasing performance.

4.2. Data Referencing

4.2.1. Choice Point Buffer

A choice point buffer offers maximum data bandwidth reduction at minimal cost. An

example of a choice point buffer design is that of the UC Berkeley PLM [Dobry 85]. A

buffer holding the current choice point is simple and directly reduces the primaxy data

bandwidth requirement caused by shallow backtracking. In the WAM, choice point

references axe always made to the current choice point defined by B. This facilitates

designing a simple yet efficient buffer as illustrated in Figure z,-2. Figure 4-2 shows the

three possible states of the buffer: invalid, valid, and partially valid. The buffer has a

_',,d bit indicating whether it contains a choice point or pa__'tial choice point, m, ranging

from zero to BufferSize, indicates the number of valid entries if the valid bit is set.

Instructions which create choice points copyback the valid portion of the buffer to

memory and load the new choice point. Instructions which reset the current choice

point simply invalidate the buffer.

valid validD valid
ii!=:!iiiii_;ii_i i!ii!_!_i!!i!i_iii_iii_i !i_ii_i i::iif!i:i_ii!i

!::iiii!iliiii::ii_;;!!_:ii!;!_" !!;i!iii!ii!ii;!_iii;_= ;11!:;:;:if.::?;,;_i!_

mli!i!!i !i!i
I

1 word -=

Figure 4-2: Choice Point Buffer Model

107

The choice point buffer management scheme is summarized below (refer to Figure C-1

in Appendix C for the detailed algorithm). If the buffer is invalid, choice point

references are serviced from memory. If the buffer is valid, a choice point reference is

not guaranteed to be contained by the buffer. A reference to a choice point larger than

the buffer size may require service from memory. It is assumed that when referencing

large choice points, the host (by either microcode or reduced native code) will access

the valid portion (up to BufferS&e) from the buffer and the invalid portion directly from

main memory. This obviates theneed for runtime checks.

The following variations of this management policy were examined:

• Use dirty bits to reduce memory traffic -- A dirty bit is a flag associated

with each buffer entry indicating if that entry holds a value not updated in

main memory. This policy does not significantly affect traffic or copyback
ratios because choice points are only allocated in the buffer when they are
created.

• Always load the current choice point into the buffer m This policy ensures

that all instructions which modify B also load the new current choice point

into the buffer. Higher hit ratios are attained at the cost of increased traffic
ratios. Even with dirty bits, the buffer's traffic ratios are over three times

that of the former policy.

Figure 4-3 shows the choice point buffer performance measurements. These statistics

account for choice point references only, i.e., the only memory requests counted are

choice point requests. In this and all subsequent memory simulations, "cold start"

measurements are presented. Hit and traffic ratios level off at a buffer size of 12 words.

An 8 word buffer, which contains at most one saved argument, achieves a hit ratio of

0.70. A 12 word buffer increases the hit ratio to 0.84 and reduces the traffic ratio to

0.28. QC 1 exhibits significantly higher hit ratios and lower traffic and copy'back ratios

than the other programs. CHAT exhibits significantly lower hit ratios and higher traffic

and copyback ratios than the other programs. This behavior can be attributed to

CHAT's highly nondeterminate style and QC 1 's highly determinate style.

Th_ choice point buffer has two additional advantages:

• Simplicity of design and small size map well onto VLSI.

• The buffer can be distributed over the state and argument registers, as

shadow registers. This reduces the time required to read and write a choice
point. This idea was first reported in Tick [Tick 85] and implemented in

the Pegasus Prolog processor [Seo 87]. '

108

0
o4

E

7 8 9 10 11 12 13 14 15 16
buffer size in words

0.5

.o 0.4 t "-

o 0.3

0.2- .=

0.0

7 8 9 10 11 12 13 14 15 16 words
0.5

0.4_
0.31

0.2 -- - -" _

°O 0,1

0.0

11 12 13 14 15 16 words
I

Figure 4.3: Choice Point Buffer Performance Measurements

109

4.2.2. Stack Buffer

An alternative to the choice point buffer is a more ambitious buffer which captures

portion(s) of the stack. A reasonable design is a directly addressable wrap-around

buffer containing the top portion of the stack. The advantage of a stack buffer over a

choice point buffer is that the stack buffer captures both environment and choice point

references. In addition, the stack buffer can capture deep choice points.

Examples of stack buffer designs include the Symbolics 3600 stack buffer [Symbolics

83], DCA contour buffers [Alpert 84], and the C Machine stack cache [Ditzel 82]. The

Symbolics 3600 stack buffer is composed of four 256 word pages. Management is

based on pages -- upon overflow, a page is spilled and upon underflow, a page is

restored. Alpert's contour buffer holds variable sized contours, similar to activation

records. Management is based on contours -- upon overflow, the oldest contour is

spilled and upon underflow, the topmost contour is restored. Ditzel's stack cache is

similar to the DCA contour buffer.

The Prolog stack buffer model is illustrated in Figure 4-4. The stack buffer

management scheme is summarized below (refer to Figure C-2 in Appendix C for the

detailed algorithm). Assume that the stack grows upward in addresses. In Figure 4-4,

physical buffer addresses increase downward. A points to the highest valid stack

address in the buffer, z points to the lowest valid stack address in the buffer. E, g point

to the current environment and choice point. TOS is the top of stack pointer.

The buffer is managed by instructions which allocate and deallocate stack objects

(environments and choice points). Instructions which create an object load the new

object into the stack buffer if the object is not larger than the buffer. If the object fits in

the buffer, the appropriate portion of the buffer is copied back to make room for the

new object. Dirty bits are used to minimize the number of buffer entries requiring

copyback. If the new object does not fit in the buffer, the entire buffer is copied back

and invalidated.

Instructions which deallocate objects reset TOS to the new top of stack. If Z > TOS,

the buffer is invalidated. If Z < TOS, the buffer remains valid. No copyback is

necessary in these situations because objects more recent than the new top of stack are

not needed.

If the buffer is invalid, stack references are serviced from memory. If the buffer is

110

Z

A v

[] valid

v

:!i!iiilzi:iii:i:iiii!:iii:i:ilii_iii_i_iiiiiii:ii!ili!iii_iiiiiiiiiiiii!i:i_i.:qili_}i:

1 word

dirty
bits [] valid

!: : i :ii:

.... i ,, ::i!!iiii<:_i_.... : "
::

:::

i :+;:: .: ; i

!i{!: i:; :.i :

dirty
bits

Figure 4-4: Stack Buffer Model: Object Allocation

valid, stack references are not guaranteed to be contained by the buffer. For instance,

references to a deep environment may not be in a valid buffer. Thus the model requires

runtime address comparison to detect a buffer hit. The model can be extended, in

obvious ways, to avoid runtime comparisons in certain instances.

An alternative policy is to always prefetch the top portion of the stack into the buffer,

,ts avoiding the need for runtime comparisons. This alternative policy is taken in

.most stack buffers designed for procedural languages, e.g., DCA contour buffers. The

"regular" stack growth of procedural languages allows these buffers to be restored when

a buffer underflow occurs, without generating excessive memory traffic. Prolog stack

behavior is more irregular because of choice points protecting deep environments, and

failure and cut releasing large portions of the stack. This irregularity coupled with a

policy of buffer restoration upon underflow is expected to generate excessive memory

traffic. Therefore the alternative policy was not measured.

Figure 4-5 shows the stack buffer performance measurements. These statistics account

for stack references only. Notice that CHAT exhibits a lower hit ratio and higher traffic

and copyback ratios than the other benchmarks, indicating less locality. In fact, CHAT

significantly affects the mean ratios. The statistics indicate that a stack buffer of 64

words, with a hit ratio of 0.95 and traffic ratio of 0.08, is sufficient to capture most

111

0
°_

t--

1.0

| I i I I

16 32 64 128 256
buffer size in words

°°t \
05 ¸

o 0.3

0.2

0.1

0.0

0.40 -

0.30
.O_

o 0.20
J3

O.
o 2o 0.10

0.00

16 32 64 128 256

I !

16 32 64 128 256

CHAT
PLM
QC1
ILl
mean

words

words

Figure 4-5: Stack Buffer Performance Measurements

112

locality in the benchmarks. Figure 4-6 shows the effect of the dirty bits on reducing

memory traffic. The traffic is reduced in the range of 27% to 42%, for buffer sizes 128

and 16 words respectively.

Note that both the stack buffer and the choice point buffer models are organized around

one word entries. This assumption may not be realistic for a system with a wider bus

(i.e., a wider physical memory word). Realistic local memories are organized around

blocks or lines of multiple physical words. The advantage of blocks is that block access

time can be reduced by pipelining memor_ module accesses in an interleaved memory.

The disadvantage of blocks is that excess traffic is generated whenever the entire block

need not be transferred (e.g., if a dirty block to be copied back is not entirely dirty).

Thus the buffer statistics presented here may be optimistic in terms of raw traffic.

However, estimates of burst mode traffic may be pessimistic.

Figure 4-7 shows the choice point reference hit ratios for the stack buffers and choice

point buffers. The stack buffer captures a significant portion of deep choice point

referencing that a single choice point buffer cannot capture. Recall, however, that the

choice point buffer, because of its simplicity, does not require runtime address

comparisons to determine a hit, as does the stack buffer. In addition, a choice point

buffer can be distributed in implementation (as shadow registers), whereas the stack

buffer cannot.

4.2.3. Environment Stack Buffer

The split stack architecture, introduced in Section 2.2.4.4, increases the locality of

environment references. A reduction in the memory bandwidth requirement was

anticipated as a result of increased environment locality. Environment bandwidth

reduction was measured by modeling an environment stack (E-stack) buffer. The E-

stack buffer model is similar to the stack buffer illustrated in Figure 4-4, except that

only environments reside within the buffer.

The E-stack buffer management scheme is summarized below (refer to Figure C-4 in

Appendix C for the detailed algorithm. Definitions of set(n) and copyback(d) are given

in Figure C-2). Assume that E points to the current environment, TOS points to the top

of me E-stack, and z points to the lowest E-stack address valid in the buffer.

As with the stack buffer model, the E-stack buffer is managed by instructions which

allocate and deallocate environments and choice points. A newly created environment

113

0
°_

0
ou

1.00

0.80

0.60

0.40

0.20

0.00

.e- dirty bits I•_- no dirty bits

I I i I i

16 32 64 128 256
buffer size in words

Figure 4-6: Effect of Dirty Bits on Stack Buffer Traffic Ratio

O
°_

¢¢
g..

¢-

1.00

0.95

0.90

0.85

0.80

0.75 -

O.70

0.65

/

I I I I I I

8 16 32 64 128 256
buffer size in words

•.g- cp buffer
stack buffer

Figure 4-7: Choice Point Reference Hit Ratios

114

is allocated in the buffer, possibly causing a copyback. Deallocated objects, both

environments and choice points, possibly cause the the top of stack to be reset. If z >

TOS, the buffer is invalidated. If Z < TOS, the buffer remains valid. No copyback is

necessary in these situations because objects more recent than the new top of stack are

not needed. Alternative policies are to always prefetch the top portion of the E-stack

into the buffer or to always load the current environment into the buffer. These

approaches are expected to cause excessive memory traffic and were not measured.

Figure 4-8 shows the E-stack buffer performance measurements. These statistics

account for environment references only. Figure 4-9 shows a comparison of the single

and split-stack model environment reference hit ratios. A 32 word E-stack buffer and

64 word stack buffer give similar performance. Choice point locality in the split-stack

model is also increased. This effect is immaterial, however, if a choice point buffer,

which buffers only one chc, ice point, is used.

4.2.4. Copyback Cache

An alternative to the previously described local memories is a data cache, which can

capture all types of references, i.e., heap and trail references as well as stack references.

A cache, in contrast to the buffers previously described, is not included in a

conventional processor architecture. In other words, a cache exploits locality without

explicit knowledge of architecture. Whereas the buffers are managed explicitly by

instructions, matching expected referencing patterns to program semantics, the cache is

managed implicitly by replacing fixed sized objects on a defused basis. In this sec_"_n,

a data cache model is described and measurements are prese_ _ ,i.

The cache model considered in this section is line (block) oriented, i.e., all transfers

to/from main memory are line transfers. A write-allocation policy is used wherein both

read and write misses cause fetching of the target. A copyback or write-back policy is

used wherein writes to the cache do not immediately update main memory. Main

memory is updated only upon cache replacement. The cache is categorized by a

number of blocks or lines of a given size (in words). The cache is modeled as a fully

associative memory, i.e., any line within the cache can contain any line from main (or

virtual) memory. A perfect least recently used (LRU) replacement algorithm is used --

the block least recently referenced is replaced next. Dirty bits are used to minimize the

number of blocks requiring copyback.

An alternative cache model uses a write-through policy, where all writes are issued to

115

0
°_
,e--,

t..,

1.00 q

-- .1
0.901

o._-_ ++_,
o._o1- .-:-,u

0 65| , , ' '

16 32 64 128 256
buffer size in words

0.50

0

t.=

0

0

0

.,Q

0..
0

0.40

0.10

0.00

0.15

0.10

0.05

0.00

I i I

16 32 64 128 256 words

| i

16 32 64 128 256 words

Figure 4-8: Environment Stack Buffer Performance Measurements

116

0

¢.-.

1.0

0.9

0.8

0.7

0.6

[_ split-stacksingle-stack

#

I I I | I

16 32 64 128 256
buffer size in words

Figure 4-9: Comparison of Environment Reference Hit Ratios

both the cache and main memory. The copyback policy is superior to the write-through

policy because the copyback policy reduces memory traffic more effectively. This is

especially important in Prolog, where the read to write ratio is almost 1:1 (see Section

3.3.1). The write-through policy, however, maintains a consistent main memory,

whereas the copyback policy does not. Variations of the write-through policy are

s:,_died m the next chapter because t);ese strategies facilitate _(qving the multiprocessor

consistency problem.

Inaccuracies in the formulation of this simple cache model follow.

• replacement policy -- Pure LRU is assumed. Inexpensive

implementations of other replacement algorithms closely approximate pure
LRU [Strecker 76]. In certain circumstances, LRU may not be the best

replacement policy, e.g., random replacement may be best for small I-

caches [Smith 83]. In any case, replacement policy is a minor parameter
compared to cache size [Smith 83].

• mapping policy- Full associativity is assumed. Real implementations
use set associativity, restricting the number of cache locations where a line

can be placed. Smith [Smith 78] reports that 2-way set-associativity

performs quite well, with performance leveling off for 4-way set-
associativity.

• traffic ratio -- Traffic ratio, as defined in Section 4.1, treats a block

117

transfer as a number of B equal word transfers. This definition ignores

implementation possibilities wherein blocks are transferred at rates faster

than the sum of the constituent words. This method of burst mode transfer
is possible with interleaved memory modules in a pipelined fashion.
Traffic ratio can be scaled to account for these effects [Hill 84]. Instead, in

later sections, queueing models are developed incorporating burst mode
effects. Unscaled traffic ratio can be viewed as a conservative statistic to

be used for comparison of local memories.

• block/sub-block sizes m The simple allocation policy used here requires

transfer of an entire block on a cache miss. An alternative policy transfers

only a portion of a block, called a sub-block, while allocating an entire
block. This alternative policy reduces traffic and cache map size, at the

cost of increasing miss ratio. Miss ratio is increased because spatial
locality is no longer exploited. An optimal trade-off between block and

sub-block sizes can often be found [Hill 84]. Larger sub-blocks give

optimum performance for scaled traffic, i.e., traffic accounting for burst
mode transfers of blocks [Hill 84]. In the main memory models of the next

chapter, interleaving is assumed, implying that the simplifying assumption
used here (block size = sub-block size) is reasonable.

• write-allocation policy m This policy refers to the fetching of the target of

a write miss into the cache. A no-write-allocation policy consistently
generates less memory traffic for small caches (64 words or less). Another

method of reducing traffic in small caches is the use of sub-block

allocation, as previously described.

• cache size _ Cache size, as defined here, is net size, i.e., "offered data"

size, discounting space required for addressing tags. To be more accurate,
especially for small caches and caches with small lines, gross size should
be calculated.

Figure 4-10 shows the data cache performance measurements. The copyback cache

simulator used to make these measurements is a translation of the DELCACHE

program written by D. Alpert [Alpert 84]. Large caches and caches with small block

size satisfy the criteria of low traffic and copyback ratios. However, small block caches

have low hit ratios. The best small cache is 32 blocks of two words each with a hit ratio

of 0.84. The best medium cache is 32 blocks of four words each with a hit ratio of 0.94.

The best large cache is 32 blocks of eight words each with a hit ratio of 0.97. The

medium and large caches retain similar traffic characteristics while improving hit ratio

at the cost of doubling cache size. The data cache simulations indicate that even small

caches deliver high performance. Heap and trail referencing exhibit more spatial

locality than may have been expected. When reading and writing structures on the

heap, referencing is sequential. Even nested structures are laid down in a localized area.

The trail is also read and written sequentially.

118

0
0_

1.00

0.98

0.96

0.94

0.92

0.90

0.88

0.86

0.84

0.21
0.0

1.00 t
0 8O

0

,," 0.60
L)

ca. 0.40
0
cJ

0.20

0.00

I I I I I

64 128 256 512 1024
cache size in words

I I I I I

64 128 256 512 1024 words

I I I I I

64 128 256 512 1024 words

I_.._. 2 word block
4 word block
8 word block

Figure 4-10: Data Cache Performance Measurements

119

0.9

o 0.8

"_E_" [-_- 2 word block]
.4.- 4 word block

"_ 4- 8 word block

=_ 0.7

0.6 , , , , ,

64 128 256 512 1024
cache size in words

Figure 4-11: Data Cache Dirty Line Ratio

Figure 4-11 shows the dirty line ratios of the data caches. Recall that the dirty line ratio

is the ratio of replacements that require copyback (the replaced line is dirty) to total

number of replacements. Copyback ratio is the ratio of writes issued by the cache to

writes issued by the processor. In a pure copyback cache, writes issued by the cache are

the number of dirty lines copied-back, scaled by the line size. The copyback ratio and

dirty line ratio are therefore both functions of the number of dirty lines replaced, called

the dirty total. In the dirty line ratio, the dirty total is inversely scaled by the number of

misses. In the copyback ratio, the dirty total is directly scaled by the line size.

Removing the scaling from the copyback ratio statistics (Figure 4-10) indicate that

small line sizes have the greatest dirty total. Thus the result shown in Figure 4-11,

where the dirty line ratio is inversely proportional to line size, is not surprising.

Another unexpected result is that copyback ratios are inversely proportional to cache

size whereas dirty line ratios are directly proportional to cache size. Dirty line ratio is

directly proportional to dirty total and inversely proportional to miss total. In the data

cache, the number of misses (and the miss ratio) drops off very fast as cache size

increases, whereas the dirty total does not. As a result, the dirty line ratio increases.

This may be explained as many write hits in the cache create many dirty lines, so that

for the rare miss, replacement has a higher probability of selecting a dirty line.

120

4.2.5. Smart Cache

In contrast to the traditional caches analyzed in the previous section, smart caches are

not ignorant of the instruction set architecture. A smart cache, as defined here, avoids

fetching or copying back lines that are not contained in the current valid storage areas of

the machine model, e.g., invalid portions of the stack and heap. The PSI-II and Firefly

machines both utilize one word line caches with write-allocation. These caches

implement the smart feature of avoidance of fetching a write miss on the top of stack.

Note that avoiding a stack or heap fetch can be implemented by a host instruction (e,g.,

PSI-II's write-stack operation [Nakashima 87]), whereas avoiding copyback

requires a runtime check by the cache.

Ross and Ramamohanarao present and measure a similar management strategy but at

:he next higher level: the transfer of pages between main memory and disk [Ross $6].

•7_'iea.r results are that for compiled Prolog programs, page traffic is reduced by a factor

o[two over a conventional paging strategy. This suggests that a similar cache line

transfer management policy may be beneficial. The smart cache strategy essentially

introduces the management policies of the stack buffer into the cache.

The potential bandwidth reduction offered by a smart cache is indicated by the high-

level statistics presented in Section 3.3.1. Almost all writes to the stack occur at the top

-- the mean choice point write depth is 5.0 words and the mean environment write

depth is 9.7 words. In addition, certain benchmarks display frequent writes to the top of

heap -- CHAT and ILI have a mean heap write depth of 6.0 words. Therefore

av_idance of fetching the line at the top of the stack or heat; on a write miss, has the

potential to significantly reduce memory traffic.

Avoidance of copying back dirty yet invalid portions of the stack appears beneficial

because on average, 40 words at the top of the stack are freed by each choice point

deallocation. Environment and heap deallocations are only half as effective, freeing up

18 words on average.

A smart copyback cache was simulated, based on the previous copyback cache. The

smart cache avoids fetching and copying back lines not contained within the current

valid storage boundaries, as ,lefined by H, B and E. Figure 4-12 compares the smart

cache and standard copyback cache data traffic ratios. Both models give identical hit

ratios. The percentage reduction in traffic ratio afforded by the smart cache over the

standard cache is given in the last graph in Figure 4-12. As indicated, savings of 20%

to 30% are expected.

121

0
om

._o

0
°m

0
.B

Q)

¢-
(D
o

1.2

1.0

0.8

0.6

0.4

0.2

0.0

30

28

26

24

22-

2O

18

smart data cache

I._ 2 word block
4 word block
8 word block

I I I I I

64 128 256 512 1024 words

cache size in words

copyback data cache

j I | | I

64 128 256 512 1024 words

% reduction in data traffic

! I ! II |

64 128 256 512 1024 words

Figure 4-12: Comparison of Copyback and Smart Caches

122

o3
¢D
O

(D

¢D

t,,.

"10
(D

o3

O

¢-
(D

¢D
Q.

50

40

30

10

o I _i!

m

CHAT PLM QCI IU

n
[]
[]

heap-f

heap-cb
stack-f
stack-cb

Figure 4-13: References Saved by Smart Cache

Figure 4-13 shows the breakdown of references saved by the smart cache, for each

benchmark. For each benchmark, four percentages are given, adding up to 100% of the

traffic savings: heap fetches (heap-f), heap copybacks (heap-cb), stack fetches (stack-f),

and stack copybacks (stack-cb). Removal of heap fetches contributes the most to the

traffic savings, with removal of stack copybacks second. Note that removal of stack

fetches consistently offers the least savings.

4.2.6. Comparison of Data Memories

In Section 4.2.1, choice point buffer performance statistics are presented considering

only choice point references. Similarly, the stack buffer and environment buffer

performance statistics presented concerned only reference types that could be stored in

the associated memory. These statistics show how well the buffer exploits the locality

of its associated data storage area. Total memory system performance includes both

local memory performance and the performance of other reference types. In some

cases, these other references bypass the local memory, and total memory system

performance is s,ignificanfly lower than the local memory performance. Figures 4-14

and 4-15 show the statistics accounting for all data reference types (instruction

reference types will be included in Section 4.4). Included in these figures are 8 and 16

• 123

word choice point buffers, 16 - 256 word stack buffers, 64 - 1024 word caches (with

four word line), and 16 - 256 environment stack buffers combined with a 16 word

choice point buffer.

The environment stack buffer + choice point buffer configuration statistics are

calculated from the individual simulator measurements, with the method given in

Section 4.1. Although the number of references to the stack and heap in the WAM and

split-stack architectures are different, the counts are approximately the same (to within

2.5% worst case -- see Section 3.4). The WAM counts are used here.

With the equations of Section 4.1, a choice point buffer configured with an environment

buffer is modeled as:

hrcp+env = hrcpPcp + hrenvPen v

trcp+env = trcpPcp + trenvPenv + Presr

Figures 4-14 and 4-15 indicate that this configuration does not perform as well as a

stack buffer of equivalent size. This result reconfirms the results of Figure 4-7, showing

that the stack buffer captures a significant portion of the choice point references that a

choice point buffer cannot -- those below the top of stack (deep backtracking). This

result is unfortunate in the sense that a choice point buffer, implemented as a set of

shadow registers, is useful because it decreases the execution time of choice point

creation and failure, during shallow backtracking. Yet a stack buffer produces

significantly less memory traffic. The combination of choice point buffer and stack

buffer is untenable because of aliasing problems -- the same memory location may

reside in both buffers. In fact, with the proposed stack buffer management algorithm

(Figure C-2 in Appendix C), shallow choice points will always alias, thus defeating the

advantage of shadow registers. Related designs, however, such as a dual choice point

buffer coupled with an environment stack buffer, may approach the performance of the

stack buffer. The AM29000, a recent high-performance microprocessor with both 64

registers and a 128 word stack buffer [Wolfe 87], is an excellent host for implementing

such a configuration.

The data cache displays significantly higher hit ratios than the buffers (note that both

the copyback cache and "smart" cache have identical hit ratios). For small caches, the

hit ratio is paid for with a correspondingly high traffic ratio. Caches of 64 words or

less, however, do better without write-allocation, and so these results are disputable.

The stack buffer generates less traffic tiaan the cache for sizes of about 200 words and

124

0
0m

r-

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
I I I I I I I I

8 16 32 64 128 256 512 1024

memory size in words

•e- cp buffer

•.I- stack buffer

•=- dcch 4w block

cp+env buffer

Figure 4-14: Local Data Memories: Hit Ratio

o

O
om

t...

0.7

0.6 !0.5

0.4

0.3-

0.2

0.1 -

0.0
! I I I I I I I

8 16 32 64 128 256 512 1024

memory size in words

-g- cp buffer
stack buffer

41- dcch 4w block

-o- cp+env buffer
4- smart 4w blck

Figure 4-15: Local Data Memories: Traffic Ratio

125

less; however, the stack buffer's advantage over the smart cache is for sizes of about

130 words and less. Above these thresholds, the caches are superior, although hardware

cost should also be considered m generally, cache hardware is more costly than stack

buffer hardware in terms of access time and number of gates.

The memories compared fall into three ranges of performance and cost, where buffer

size in words is a simple approximation to cost. For low cost, 16 words or less, a choice

point buffer implemented as shadow registers has the best performance. For medium

cost, 32 - 128 words, the stack buffer is best. For high cost, greater than 130 and 200

words, the smart and copyback caches respectively are best.

The data cache performance for the WAM is now compared to similar local memories

for procedural language architectures. Because numerous studies have been made of

the memory characteristics of procedural languages, and this dissertation is one of the

First studies of Prolog memory characteristics, it is helpful to the intuition to understand

their relationship. Mulder [Mulder 87b] measured the data memory performance of

typical Pascal programs. Only traffic ratio will be compared here because it is the most

significant statistic. Figure 4-16 shows the traffic ratios of two and four word line

caches for Pascal and Prolog. The Pascal benchmarks generated significantly lower

traffic ratios. For the lowest traffic measured, that of 1024 word caches with two word

lines, the Pascal traffic ratio is 0.031, 33% of 0.094 for Prolog. For four word lines, the

Pascal traffic ratio is 0.049, 50% of 0.10 for Prolog. These results indicate that the

Pascal working set is smaller and locality is higher. The Prolog storage model is more

complex than the Pascal storage model, entailing a heap, stack and trail. In addition, the

heap and stack can grow large (see Table 3-4). Even with garbage collection, the

Prolog storage areas will grow erratically, still giving a larger working set than Pascal.

4.3. Instruction Referencing

Local memory buffers capturing instruction references are introduced in this section. A

look-ahead instruction buffer, instruction cache, and combined instruction/data (UD)

cache are described and measurements are presented. The functions of an instruction

buffer and cache are complementary. An instruction buffer prefetches the instruction

stream, attempting to supply the CPU with a constant supply of instructions. An

instruction cache reduces the effective access time of instruction references and

prefetches instructions by block. Often a simple instruction buffer that cannot capture

loops is configured with an instruction cache, or I/D cache, which does.

126

0

o

tO

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
64 128 256 512 1024

cache size in worcls

-o- 2w Prolog
•_- 4w Prolog
4- 2w Pascal
•_- 4w Pascal

Figure 4-16: Pascal and Prolog Copyback Data Cache Performance Measurements

All local instruction memory performance measurements presented in this dissertation

are based on the fixed-size byte-encoded formats defined in Section 3.3.2. This scheme

is considered to be the most realistic. The Lcode emulator, however, executes loosely

encoded instructions, most of which are either one or two words in length. Although

this facilitates fast emulation, it makes accurate instruction trace production difficult for

other encoding schemes. There are two reasons for this. First, program • _e varies wit_,

encoding scheme, therefore branch target distance varies. Sect_ .1, individtte_

instruction sizes vary with encoding scheme. A mapping is made from Lcode addresses

to byte-encoded instruction addresses, which solves the above problems, while

generating the instruction trace file. 9

9"l'hemapping is approximated in the following manner. A psuedo program-counter, Pb, is used to
track the Lcode program-counter, P. For sequential execution, both P and Pb are incremented by the
instruction size (in bytes). For branches, however, P = A and Pb = k* (A - codebot), where k<l
is the ratio of byte-encoded program size to Lcode program size and codebot is the base address of the
program.

Tl_is mapping has the advantage that each de,main maps into a single range. In addition, sequential
instruction addresses are accurate. The mapping has the disadvantage that branch targets are inaccurate
because of the inaccuracy of scaring. This inaccuracy slightly perturbs cache performance statistics
because determining whether a target instruction is in the cache is dependent on where the branch is
located. This perturbation is assumed to be minor because recursive loops usually branch from a fixed
location, thus accurately branch to the same target.

127

4.3.1. Instruction Buffer

The instruction biaffer modeled captures sequential instructions. The instruction stream

is prefetched to guarantee that a program withou_ branches will never miss in the buffer.

Branches cause the buffer to be invalidated and a new buffer full of instructions to be

fetched. This model is sufficient to approximate hit and traffic ratios. The problem is

that a sequence of simple instructions may empty the buffer faster than prefetching can

keep it filled. See Rau [Rau 77] for a more complete model which can measure this

effect. This problem is assumed to be minor here because the WAM is a high-level

instruction set that requires significantly more time to execute most instructions than a

conventional architecture.

The degree of prefetching, d, is defined as the number of bytes prefetched when a

reference misses in the buffer (d bytes beyond the missed reference itself). Each

decoded instruction prefetches a number of bytes equal to the size of that instruction.

Therefore the model retains d bytes of unseen instructions in the buffer at all times. In

other words, the model simulates buffers of size d. As d is varied, the hit ratio remains

constant, limited only by the number of branches in the instruction stream. Lcode

branches occur after instructions such as call and try. Instructions between

branches are called runs. Run length distributions (in words) for the benchmarks are

shown in Figure 4-17. These distributions assume a byte-encoded instruction set. The

mean run length is 17 bytes and the 95% quantile is 42 bytes. (A word encoded

instruction set has a mean run length of 6 words and a 95% quantile of 16 words).

Given the simple run length distribution, it doesn't pay to make d significantly greater

than the mean run length.

The mean run length of 17 bytes for Prolog programs, with an average instruction size

of 2.6 bytes (see Section 3.3.2), implies 6.5 instructions per run. To illustrate the high-

level nature of the WAM instruction set, consider a comparison with the IBNU370.

Huck [Huck 83] measured a mean run length of 16.9 instructions for IBM/370 Fortran

programs -- over twice that of the WAM.

In the instruction buffer model, hit ratio is not dependent on buffer size (branch targets

contained in the buffer are not detected). Since traffic ratios increase with d, it would

appear that the smallest buffer size (minimal d) of four bytes (approximately maximum

instruction size) is best, but this is not always the case. As mentioned previously, hit

ratios for small buffers can be inaccurate because certain factors, such as instruction

execution time, are not taken into account.

128

0.20

0.16
CHAT

0.12

oo, j
0.00

10 20 3O 4O 5O 6o 7O

o.2o PLM

10 20 30 40 50 60 70

QC1

0.16

0.12

0.08

0.04

0.00

0.20

0.16

0.12

0.08

0.04

0.00

0.20

0.16

0.12

0.08
°

0.04

0.00

0.20 1
0.16

0.12

I

10 20 30 4o 50 60 7o

ILl

I I I I I

20 30 40 50 60 70

mean

0.08
0.04

0.00 , i
10 20 30 40 5'3 60 70

Figure 4-17: Instruction Run Length Distribution (bytes)

129

0

rO

2.6-

2.4

2.2

2.0

1.8

1.6

1.4

4

I I I I

8 12 16 20

buffer size in bytes

•-_ chat

plm
-m- qcl

ili

•.=- rnearl

Figure 4-18: Instruction Buffer Traffic Ratios

The mean hit ratio for the benchmarks is 0.82, with almost no variance (for the word

encoded instruction set the mean hit ratio is 0.74). This result can be verified using an

analytical approximation of hit ratio, (r-i)/r = 0.85, where the mean instruction length, i,

is 2.6 bytes and the mean run length, r, is 17 bytes. This statistic represents the branch

frequency as the ratio of sequential instruction bytes to total instruction bytes

referenced.

Figure 4-18 summarizes instruction buffer traffic ratios. Traffic ratio here is defined as

the number of bytes fetched by the buffer divided by the number of bytes in the

instruction stream. A system where memory transactions occur in units of buswidths

(i.e., physical words) may be forced to move more bytes than indicated in this definition

of traffic ratio. The traffic ratio represents a best case estimate and other systems with

physical words larger than a byte will likely have higher traffic ratios.

The instruction buffer cannot have a traffic ratio of less than one because branch targets

contained in the buffer are not detected. Because of the inaccuracy of hit ratios for

small buffer sizes, the 12 byte buffer with traffic ratio of 1.8 is chosen for configuring

data and instruction memories in Section 4.4.

130

4.3.2. Instruction Caches

The cache simulator models a cache with multiple word lines with a CPU issuing word

requests. Such a model is tuned for data references, each a word in size; however,

byte-encoded instructions consist of a variable number of bytes. The emulator rounds

instruction byte addresses into word add_sses during trace production. For example, a

two byte instruction straddling a word boundary causes two word references in the

trace. This method of trace production allows the use of the standard copyback cache

simulator (Section 4.2.4) to collect instruction referencing statistics. With this method,

however, hit and traffic ratio statistics must be carefully interpreted, as described below.

In the system without a cache, the assumption is made that instructions are fetched

independently with no buffering. For example, a word is fetched for a byte instruction,

and extra bytes are ignored. Since there are no instruction writes, there is neither

copyback nor write-through in an instruction cache. Therefore traffic ratio is

tr = Rm*B / R,

where, using the notation of Section 4.1, R is the number of CPU requests, R m is the

number of requests which miss in the cache, and B is the cache line size in bytes.

In the data cache simulator, miss ratio is calculated as the number of (word) references

missing in the cache over the total number of (word) references. An alternative

definition is the number of bytes referenced missing in the cache over the total number

of bytes referenced. For a data cache these two definitions are equivalent because all

references fall on word boundaries. The alternative definit;on, although desirable for

the instruction cache, cannot be calculated with the standard cache simulator because of

the trace production method previously described. For a byte-encoded instruction

stream, the two definitions produce different results; however, the difference is

expected to be small.

Figures 4-19 and 4-20 show the hit and traffic ratios of an instruction cache. Instruction

caches offer lower traffic ratios (and lower hit ratios) at the cost of larger sizes than the

instruction buffer (shown in Figure 4-18). These performance curves can be understood

as follows. The hit ratio increases and traffic ratio decreases with cache size because of

the capturing of loops (c.f, the instruction buffer). Consider the points on the curves

where traffic ratio is one, i,e., all words fetched into the cache are used once and only

once. These points, for line sizes two and four, correspond directly to hit ratios of 0.50

131

0
°_

t-

0.95 -

0.85

0.75

0.65

0.55

0.45

i:iwor ,ock
word block

8 16 32 64 128 256 512 1024
cache size in words

Figure 4-19: Instruction Cache Hit Ratio

O
°_

L_

O
°--

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

.-]

I I I I I I I I

8 16 32 64 128 256 512 1024
cache size in words

..o- 2 word block I4 word block

Figure 4-20: Instruction Cache Traffic Ratio

132

and 0.75. Consider a general instruction stream, where the last instruction referenced

fell within a given cache line. For a traffic ratio of one (where no information is

reused), hit ratio is defined as follows.

hr = Pr(next reference in line)

= 1 - Pr(next reference not in line)

= 1 - {Pr(branch) + Pr(not branch)*Pr(overruns line)},

where

Pr(overruns line) = mean instr length / line length.

The probability of a branch, Pr(branch), was measured as 0.17, the miss ratio of the

instruction buffer in the previous section:

Prfbranch) = 0.17

Pr(overruns 2 word line) = 2.6/8 = 0.325

Pr(overruns 4 word line) = 2.6/16 = 0.163.

Therefore hit ratios for these line sizes are estimated as

hr 2 = 1 - {0.17 + 0.83*0.325} = 0,56

hr 4 = 1 - {0.17 + 0.83"0.163} = 0.69.

These correspond closely to the measured results. The previous analysis simplified the

c,,che behavior to permit an analytical solution. In general, loops are captured in cache

sizes both above and below the threshold of tr -- 1. Branches cause the sequential

instruction stream to be interrupted, causing portions of lines to never be referenced.

These two effects balance at the threshold. Cache sizes below the threshold produce

more traffic and lower hit ratios because fewer loops are captured. Cache sizes above

this threshold produce less traffic and higher hit ratios because more loops are captured.

Figure 4-21 shows the performance statistics of a combined instruction/data (I/D) cache.

Figure 4-22 shows the dirty line ratios of the lfD caches. Note that the dirty line ratios

are non-monotonic. In the I/D cache, instructions fill the cache in such a way as to

decrease the rate of change of miss ratio for small caches and increase the rate of

change of miss ratio for larger caches.

133

0
°--
,e,..,=

t,=.

t-

0

CO

0
o--

t,...

{.)

O.
0
0

1.00,

0.95 -

0.90

0.85

0.80

0.75

0.70

0.65

1.6"_

1.4_
q

1.2:

1.0 -"

0.8

0.6

0.4

0.2

0.0

z"
! I I I I

64 128 256 512 1024
cache size in words

64 i _ ! I128 6 512 1024

1611.4

1.2
1.0

0.8

0.6

0.4

O.2 _

0.0 ,! !

'64 128 '256 512 1024

I_. 2 word block
4 word block
8 word block

words

words

Figure 4-21: Instr/Data Cache Performance Measurements

134

0

t,=

G}
¢.-

=m

.m

"0

0=40 -

0.35

0.30

0.25

0.20

64 128 256 512 1024

cache size in words

I._ 2 word block
4 word block
8 word block

Figure 4-22: I/D Cache Dirty Line Ratio

4.4. Local Memory Configurations

In this section, several uniprocessor local memory configurations are presented. For

each configuration, miss and traffic ratios for instruction and data are already known

from local memory simulations With the equations of Section 4.1,

hrd+ i = hrdP d + hriP i

trd+ i = trdPd + triP i,

where Pd = 0.77 and Pi = 0.23, the probabilities of data and instruction references,

respectively (see Section 3.2).

The configurations considered are listed below (other configurations can be similarly

calculated with the previous equations). Note that a combined lid cache captures both

instructions and data, whereas split I+D caches consist of two caches: one for

instructions, one for data.

• I/D cache (copyback with 4 word line)

• I+D caches (copyback with 4 word line) -- instruction cache is one fourth

135

data cache size. This is meant to approximate the mean instruction/data

referencing ratio of the benchmarks, about 1:3.

• instruction buffer (3 words) and data cache (copyback with 4 word line)

• instruction buffer (3 words) and stack buffer

• instruction buffer (3 words) and choice point buffer

Figures 4-23 and 4-24 show each configurations' hit and traffic ratios. For high

performance systems (i.e., high hit ratio and low traffic ratio), the split I+D caches are

best. As the configurations decrease in size, the split caches retain a traffic advantage;

however, the I-buffer + D-cache configuration has superior hit ratios. This is because

the look-ahead I-buffer has better hit performance than an I-cache. For lower

performance systems, the stack buffer configuration is superior because cache traffic

ratios rapidly increase with decreasing cache size. Note that a combined IfD cac,_e :s

less costly hardware than a split I+D cache (although less than a 10% reduction in size

for most VLSI implementations) however the latter offers twice the bandwidth to the

CPU.

The superiority of the split I+D caches over a combined IfD cache may not be expected

because large caches for traditional architectures display the opposite behavior [Smith

82]. The result is not surprising, however, in the context of Prolog executing on small

caches. Prolog programs do not display as much locality as procedural languages, as

indicated by the modest performance of the instruction caches analyzed in the previous

section. This can be attributed to lack of tight loops. The long Prolog loops appear as

sequential code to a small cache (note that within the loop, there may be branching from

one run to another until the top of loop is re-encountered). Sequential instruction

referencing has a devastating effect on the combined UD cache. Sequential instruction

fetching causes continuous replacement of data lines by code because of the LRU

replacement policy. Yet the code lines have little or no temporal locality. Thus the

program takes over a larger percentage of the combined cache than it can exploit as

efficiently as the data. Note that the I/D and I+D traffic ratio curves, in Figure 4-24,

possibly cross for cache sizes larger than those measured. This would indicate that

Prolog behavior was conventional, similar to the traditional languages measured by

Smith [Smith 82].

136

O
°--

t-

1.0

0.9

0.8

0.5 /

/ •.g- I/[3 cache
-.e. I+D caches

4- I-buf + D-cch

•._ I-buf + sbuf

4- I-buf + q:)buf

0.4 i i ,
101 102 103 10 4

size in words

Figure 4-23: Configuration Hit Ratios

1.4

1.2

1,0

o %
•_ 0.8

0.6

0.4

0.2

-g- I/D cache
I+D caches

I-buf + D-cch

-o- I-buf + sbuf

-=- I-buf + ¢pbuf

0.0 I I I

101 102 103 104

size in words

Figure 4-24: Configuration Traffic Ratios

137

4.5. Main Memory Design

In the remainder of this chapter, queueing models are used to determine the memory

interleaving required to support the local memory configurations previously described.

This analysis gives the appropriate interleaving to prevent the memory from becoming a

performance bottleneck. The necessary memory queue length and the expected

degradation of processor performance due to memory contention are calculated.

The system model illustrated in Figure 4-1 consists of a uniprocessor CPU attached to

an interleaved main memory by a single bus. The interleaved memory consists of m

modules, each of which can deliver one physical word per access. The bus transmits a

physical word in Tbu s, the bus cycle time. A physical word can be a multiple number of

32-bit words. Each module can deliver a physical word in T a cycles, the memory access

time. The modules can be reaccessed after at ieast T c cycles, the memory cycle time.

The CPU model used in the remainder of this dissertation is based on the UC Berkeley

PLM [Dobry 85, Dobry 84], a WAM instruction set processor. Relevant aspects of the

PLM (not to be confused with the PLM benchmark) are reviewed below. For a

complete description of the PLM, see Dobry [Dobry 87b]. Differences between the

CPU model used here and the actual PLM are due to assumptions regarding timing and

the memory design. The PLM timing equations described by Dobry [Dobry 85] have

been augmented with timings for built-ins, derived by Mulder [Mulder 87a]. To the

first order, the two models have approximately the same execution performance,

assuming a one cycle main memory. The queueing models presented in this section can

be used to estimate the performance of other types of processors, e.g., PSI-II and SPUR.

These processors can be modeled by approximating the queueing model parameters

relative to the PLM. Local data memory behavior for these models can be assumed to

be the same. Local instruction memory behavior might be derived, for instance, from

the data presented by Borriello et. al. [Borriello 87].

The PLM memory design is not of concern here because the memory models previously

introduced, e.g., an I/D cache, are used instead. A queueing model is developed in

anticipation of its essential role in analyzing multiprocessor performance. The model is

also used to analyze simple uniprocessors because time is reintroduced, permitting the

calculation of statistics, such as performance degradation and achieved bandwidth

efficiency, not previously obtainable with the simple model of previous sections.

Because read and write requests are issued independently of service time, the requests

can freely contend for the memory modules of an interleaved memory. In addition, a

138

heuristic is added to the queueing model to approximate the effect of a read miss

stalling the CPU until the target word is delivered. This heuristic is described in greater

detail in Section 4.5.3.

In the next section, the general queueing models are introduced. From these general

models, models of interest can be easily derived. Two such main memory queueing

models are presented in the following sections. The first assumes a local memory

which is a traditional I/D copyback cache. The second assumes a local memory which

is a stack and instruction buffer configuration.

4.5.1. General Queueing Model

Two general queueing models are introduced in this section: an open model and a

closed or asymptotic model. The open model, although unrealistic because its arrival

and service rates are independent, is useful for motivating the closed model. The closed

model f,, more realistic because its arrival and service rates are equal, i.e., it is in the

steady-state.

The open queueing model consists of a CPU which generates requests independently of

a memory which services the requests. The request rate is _. and the service rate is It.

The ratio L/It. called the occupancy, p, must be significantly less than one for the open

queue model to be accurate.

Analytical solutions exist for certain Markovian processes, e.g., Poisson arrival times

arL,_ exponential ser_,_ce time distribution. The M/D/1 model assur_)es a Poisson arrival

distribution (M for Markovian) and a server (1 for single) with a constant service time

(D for deterministic). Arrivals are queued in an infinite size buffer and served on a

first-in first-out (FIFO) basis. The M/D/1 model corresponds to a single CPU issuing

requests as a Poisson process and an interleaved memory system of n modules, each of

which has a constant cycle time, Tc, and a queue for waiting requests. The single server

in this model is a single memory module, the assumption being that each module in the

system will act accordingly.

There are two basic statistics of interest for designing an interleaved memory. The

solutions for expected time waiting in queue not including the time spent in the server,

T' w, and expected number of requests queued per module not including the one in

service, Q', are [Kleinrock 75, p.188-191]:

Q'= 02/2(1-19) (4.1)

139

Q = p + p2/2(1-p) = p + Q' (4.2)

T' w = (1/_.)*p2/2(1-p)= Q'/_.. (4.3)

The design of the interleaved memory has been reduced to a problem of accurately

determining _. and g. The accuracy of determining these rates varies with the

complexity of the model. As outlined in the previous chapter, a local memory between

the CPU and main memory will filter the requests. In addition, a local memory with a

complex replacement scheme, possibly based on explicit control by instructions, will

add its own requests. These two effects alter the arrival rate. When various sized

objects are transmitted between the local memory and main memory, the service rate is

altered.

The degree of memory interleaving is determined by first calculating the processor's

peak sustainable memory request rate, kp. The memory is designed around a peak rate

because at burst speeds, the memory should not slow down the processor. A sustained

peak rate is used to avoid overdesigning the memory; however, the definition of

"sustained" is difficult to pinpoint. For scientific code, often a "typical" inner-loop, e.g.,

matrix multiply, is used to represent the peak sustainable rate. The analogous Prolog

artificial benchmark is determinate append/3 (see Figure 2-2). The benchmark

append/3, however, does not use the stack and thus does not generate a peak request

rate. Ideally, an artificial burst benchmark is not what is desired -- a measurement of

the bursty portions of a large benchmark is more realistic.

CHAT PLM QCI ILl
cycles 4120845 4530539 4840096 2127167

LI 47677 54694 42489 23789
KLIPS_ 116 121 88 112

1"assuming 100 nsec cycle

Table 4-1: PLM Timings

To measure _.p the PLM timing model [Dobry 85] is used. The PLM timing equations

assume a one cycle memory, i.e., that read requests are serviced in one cycle. This

assumption is legitimate for peak request rate calculations. Although an instruction

may need to wait for a read request to be serviced, counting the request as a single cycle

gives a pessimistic peak rate, for a conservative memory design. Table 4-1 shows the

PLM cycles and number of logical inferences (LI) for the benchmarks studied. A

140 ,

logical inference is calculated as a user-defined or built-in procedure call. Performance

in terms of thousands of logical inferences per second (KLIPS) is given, assuming a 100

nsec cycle. Note that to achieve one MLIPS performance with PLMs, about 8-10

processors are necessary. Each processor runs at about 100 KLIPS or 1.5 MIPS.

The PLM timing equations, augmented with timings derived for built-ins [Mulder 87a],

were combined with mean reference counts per instruction, to give the mean request

rate per instruction. This method is accurate because for a given instruction, cycles per

instruction and references per instruction are both calculated as averages over the

benchmarks. Thus the ratio, corresponding to the request rate, is independent of the

mean, i.e., is a valid peak rate. The unknown factor is how the instructions combine

into a burst rate. To calculate this, a moving windowed average of the rate is calculated

with varying window sizes. The maximum is calculated to get an approximation of the

sustained peak rate. Of course, window size affects the calculated rate. A window of

one instruction is an upper bound. An infinite window size indicates an average r,,,e for

the entire program, a lower bound. Figure 4-25 shows the mean (over the benchmarks)

peak sustainable memory request rate as a function of window size. Xp = 0.6

words/cycle was chosen for the calculations of this chapter. For a large window,

kbase = 0.46 words/cycle, corresponding to the average request rate. Note that the CPU

issues word requests, although the main memory delivers only physical words.

Again with the statistics from Section 3.2,

Xp = _i + kd

= kp*'Ui/'o = 0.6*0.23 = 0.138 words/cycle

Xd = Xp*'Ud/_ = 0.6*0.77 = 0.462 words/cycle,

where _-i and _'d are the instruction word and data word request rates, respectively. In

this and subsequent queueing models, the average (over the benchmarks) statistics

presented in Chapters 3 and 4 are used as input parameters. Several of these statistics

have high variances with respect to the benchmarks and/or the WAM instructions. It

should be noted that these variances reduce the accuracy of the queueing model results.

Assuming a simple model of a uniprocessor and main memory, the memory

interleaving (number of modules) and module queue size can be calculated with the

Flores model fF"lynn 87]. This gives a conservative approximation and sanity check for

later calculations using more complex models. The Flores model assumes that the

processor request stream splits evenly across the m memory modules,

141

0.8

o 0.7

¢v-G
o 0.6

0

0.s

0.4 I I I I | I

0 1O0 200 300 400 500 600

window size (instructions)

Figure 4-25: Mean Peak Sustainable Request Arrival Rate

= _p/m

p = X/_ = XpTclm.

For ease of addressing a module, m is usually chosen to be a power of two, i.e., m = 2 k

for some integer k. With these parameters, Q' and T' w can be calculated with Equations

(4.1) and (4.3).

The asymptotic queueing model [Flynn 87], is now described. This model permits more

accurate formulations of the statistics of interest. It will also be shown how these and

additional statistics, such as bandwidth efficiency, can be expressed in terms of the open

model occupancy and the asymptotic model occupancy, helping the intuition. The

asymptotic model represents a closed or steady-state queueing system, i.e., where the

arrival and service (departure) rates are equal. This model more accurately

approximates a real system, where, in contrast to the previous open queueing system,

the occupancy, p, cannot approach arbitrarily close to one. Consider a memory system

of m modules. The offered bandwidth, B o, is defined as the average number of

customers (requests) arriving (in the steady state) during one memory cycle, T c. Note

that these "arrivals" may be from the memory queue.

142

Bo=

Assuming uniform distribution of requests over modules, by the

assumption, the average number of requests at each module will then be

steady-state

Q = Bo/m = LpTc/m = (Lp/m)T c = X/It = p.

With the M/D/1 solution (Equation (4.2)),

Q = Pa + pa2/2(1-Pa)'

where Pa is the asymptotic occupancy. Equating these two solutions and solving for Pa,

Pa : 1 + p - (p 2 + 1) 1/2, 0 < Pa <- 1.

The achieved bandwidth, B a, is defined as the average number of requests serviced each

memory cycle. Note that since the model is in the steady state, B a is also the outside

arrival rate, i.e., the average number of requests arriving from the CPU each memory

" cycle. B a is also the average number of modules busy during the memory cycle,

B a -- mPa.

The bandwidth efficiency, _, is defined as the ratio of achieved to offered bandwidth,

= Ba/B o = mPa/'LpT c = pa/p, 0 < _ < 1. (4.4)

Thus the bandwidth efficiency 11 can be easily calculated as the ratio of the asymptotic

occupancy to the occupancy of the open queueing model. The efficiency is the fraction

of the bandwidth required by the system, supplied by the memory.

Consider the steady state behavior of the system at a microscopic level. Assume that

(Bo-Ba) customers are enqueued, waiting for service at the start of a memory cycle, T c.

Over the memory cycle, B a new customers arrive from the CPU, giving B o total

requests. B a customers are serviced, leaving a different (Bo-Ba) customers waiting.

Thus in the steady state, (Bo-Ba) customers are always waiting,

Q' = 030 - Ba)/m = Bo/m" Ba/m = P" Pa

=Q,%=

tiThe limits on _ are derived as follows. _ = pa/p _ 0 is trivially true becausep,p= > 0. Also, p > 0 ¢:*

(1 + p)1/2> 1 ¢= (1 + p)Za> 1+ p- p¢=_1 + p-(1 +p)112<p ¢=,pa_<p ¢,_= pa/p _ 1.

143

Note that both the open and closed models can be formulated in terms of the effective

memory cycle time, T e = Tc/m. T e represents using the interleaved modules in a

pipelined fashion. Therefore, in these simple models, performance can be improved by

either decreasing the memory cycle time or increasing the number of modules, with

equal effectiveness. Note that in a real system, because of other constraints,

performance cannot be improved indefinitely by increasing the number of modules.

Figure 4-26 compares the open and closed queueing models. The occupancies,

expected waiting times, and bandwidth efficiency are plotted as functions of T e.

1.0

0.8

0.6

0.4

0.2

0.0

-n-p
-4- Tw' open

-_- Tw' closed

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Te

Figure 4-26: Flores Model (Xp -- 0.6)

For lightly loaded systems, both models give similar results. As the system

organization degrades, with increasing T e, the open model saturates (P approaches one),

but the closed model does not. The closed model stays saturation by achieving less

bandwidth than the open model -- this is indicated by the decreasing bandwidth

efficiency, {, with increasing T e. The open model guarantees delivery of bandwidth

equal to the arrival rate of Xp words/cycle, the offered bandwidth. To achieve this under

saturated conditions, it requires long queues and delays. The closed model is self-

regulatory in the sense that it cannot deliver impossibly high bandwidths with an

inferior system (high Te). It achieves less bandwidth, B a, with shorter queues and

delays. The closed model is considered more realistic precisely for this reason -- a real

144

system cannot tolerate excessive delays necessary to achieve high bandwidth, and will

issue memory requests at a lower rate as delays cause feedback. The closed model is

used throughout the remainder of the dissertation.

4.5.2. Memory Bus Model

A memory bus can also be modeled, as an independent system resource, with the Flores

model:

_l.bus = 1/Tbu s

Pbus = _'bus/l'tbus"

The asymptotic model is derived as in the previous section with m = 1,

Bo = _'busTbus -- Pbus

Ba = mPa = Pa = 1 + Pbus" (Pbus 2+1)I/2

_bus = Pa/Pbus •

Unless efficiency is high, i.e., occupancy is low, the bus will bottleneck the memory

system, no matter what degree of interleaving is provided. As seen from the equations,

a fast enough bus will avoid this problem. For local memory models transferring blocks

an alternative is to increase the width of the bus, up to block size.

4.5.3. Copyoack i/D Cache System

The model presented here, based on that given by Flynn [Flynn 87], is a uniprocessor

attached to a copyback cache (Section 4.2.4). The copyback cache uses write-allocate

strategy wherein both read and write misses cause fetching of the target. The cache is

line (block) oriented, i.e., all transfers to/from main memory are line transfers. The

cache fetches a line on demand with fetch-bypass and wrap-around load. Fetch-bypass

delivers the target line directly to the processor from memory while the cache is

concurrently loaded. Wrap-around load delivers the target word within the line directly

to the processor. Buffers are assumed, to allow simultaneous transfer of a dirty line

from the cache and the target li,e from memory.

Transferring a line to/from the cache involves a delay, Tline, defined as

145'

Tline = max(T a + (L-1)Tbus,Tc),

where L is the line size in units of buswidths, and Tbu s is a single bus transfer time. The

max is used to ensure that service cannot complete until after one memory cycle. The

T a term represents waiting for the target word within the line, and the (L-1)Tbu s term

represents transferring the remaining portion of the line in burst mode (pipelined)

fashion. The major assumption being made here is that the memory interleaving factor,

m, is greater than or equal to L. For the uniprocessor model, there is no advantage to

making m greater than L, because the extra modules cannot decrease Tline.

The cache request rate is approximated with two streams: _-1 and)v2. The first stream

represents requests that do not stall the processor. The second stream represents

requests that do stall the processor.

_'I = X'w*MRw + Xp*MR*DR

at*lYrer

T 1 = Tline

T 2 = Tline - Tdead

Tdead = T a

These two streams are combined with an M/G/1 queueing model:

_L=- _,i+ X2

T = (_.I/_.)T1 + (X2/_.)T 2

It= 1/T

p = X/_ = _.IT1 + X2T 2.

(4.5)

(4.6)

(4.7)

(4.8)

In the above equations, MR is the miss ratio of the local memory, split into MR r, the

read miss ratio and MR w, the write miss ratio. DR, the dirty line ratio, is the ratio of

dirty to clean lines replaced. Values of these statistics are given earlier in this chapter

(Figures 4-22 and 4-23). These values, with corresponding line and cache sizes, are

used as input parameters to the queueing models. The input request stream, Xp, is split

into _, the read miss requests, and)_w, the write miss requests. I/O is not modeled in

this or subsequent formulations, although it can be easily be included [Flynn 87].

The Tdead term is a heuristic which indicates that requests will not arrive at the memory

146

while the processor is waiting for the target word of a read miss, i.e., during the T a

delay. In this and subsequent models, Tdead is thus approximated as T a. Consider the

arrival of requests on a time line. A gap appears during the T a delay, when no arrivals

will occur. However, the simple queueing models used assume independent arrival and

service rates. The effect of a decreased arrival rate ix approximated by increasing the

sern'i,e rate. Note that although write-allocation is assumed, it is also assumed that the

CPU need not wait for a write miss request to be serviced.

An M/G/1 asymptotic model [Flynn 87] is similar to the M/D/1 asymptotic model of the

previous section. Consider a memory system of m modules as a single server. By the

steady-state assumption, the average queue size is

Q = _.T = _.IT! + _,T 2 = p, 0_<Q,p< 1.

Using the Pollaczek-Khinchine solution [Kleinrock 75, p. 187],

Q = 9a + 9a2(1+C2)/2(l'Pa),

where Pa is the asymptotic occupancy. Solving,

Pa = (1 + p - (92+2C29+1)1/2)/(1-C2). (4.9)

The statistics of interest, T' w and Q', are derived from the asymptotic occupancy, using

the standard M/G/1 solutions,

Q' = pa2(1+C2)/2(1-Pa) (4.10J

T' w = Q'/_., (4.11)

where C, the coefficient of variation, is

C2 = (_.I/X)(I-TI/T) 2 + (X2/_.)(I-T2/T) 2, 0 ___C 2 _< I.

The memory bandwidth efficiency, _rnern, is derived in a manner similar to Equation

(4.4),

_mem = Pa/P • (4.12)

The degradation of uniprocessor performance due to main memory contention is now

calculatea. To simplify the equations, processor performance is measured in units of

cycles per instruction (the inverse of the conventional definition). Degraded typical

performance is measured rather than degraded peak performance. Recall from Figure

147

4-25 that the average memory request rate is Xbase = 0.46 words/cycle. Recall from

Section 3.2 that the average request rate per instruction is "o = 3.0 words/instr.

Therefore the average processor performance, Pbase, is

Pbase = "°/Xbase = (3.0 ref/instr) / (0.46 ref/cycle) = 6.5 cycles/instr.

For a 100 nsec cycle PLM, this corresponds to an execution rate of about 1.5 MIPS.

The performance of a processor assuming no misses, Pno-miss, is now calculated.

Pno-miss = Pbase + Pbranch,

where Pbranch is the branch penalty in cycles/instr,

Pbranch= Pr(unc°nd)Tuncona * Pr(c°nd)Tcond _"Pr(micr°)Tmacro"

Unconditional branches are instructions such as call, execute, and try.

Conditional branches are instructions such as switch constant and

switch term. The fail operation and escape instructionsare categorized as

micro branches, because although they do not appear in the image architecture,they

may still evoke a penalty, depending on implementation. From Section 4.3.1,

Pr(branch) = 0.17 on average. CHAT presents statistics close to the mean and is

therefore used to estimate Pbranch" For CHAT, Pr(uncond) = 0.11, Pr(cond) = 0.04 and

Pr(micro) = 0.04. Assume that Tuncond = 1, Tcond=2, and Tmicro=l. Therefore, assuming

no cache misses,

Pbranch = 0.11"1 + 0.04*2 + 0.04"1 = 0.23 cycles/instr

Pno-miss = 6.5 + 0.23 = 6.73 cycles/instr.

Actual processor performance, Pactual, accounts for misses.

Pactual = Pno-miss + Pmiss,

where Pmiss, the miss penalty in cycles/instr, is

Pmiss = Taccess*X)r*MRr"

Recall from Section 3.2 that the average read request rate per instruction is

19r = 1.6 words/instr. When calculating the miss penalty, only read misses are

considered because of the previous assumption that only read misses stall the processor.

The expected miss delay, Taccess, is

148

Taccess = T a + T' w,

where T a is the memory access time and T' w is the previously defined expected waiting

time. Degradation, D, is the fraction of ideal processor performance (assuming an

infinite local memory) lost due to local memory misses in an actual processor (with a

finite local memory). In the following definition of D, recall that performance is

defined inversely to standard definitions.

D = (Pactual " Pno-miss)/Pactual ' 0 < D < 1. (4.13)

A bus model for this system is derived as in Section 4.5.2, with

_'bus = Lp*MR.*(1 +DR)*L.

This model assumes that addresses issued for read requests do not require a separate bus

cycle. The bus bandwidth efficiency, {bus, is the fraction of the bandwidth required by

shared memory and the processing elements, supplied by a single shared bus. Recall

that the bandwidth efficiency, _mem, is the fraction of the bandwidth required by the

processing elements, supplied by the shared memory, assuming an ideal bus, i.e.,

{bus = 1. These statistics are related to PE performance because reduction in bandwidth

efficiency implies reduction in the bandwidth offered, which is approximately

proportional to the rate at which tlhe PEs execute instructions. The statistics are not

combined with performance degradation, D, so that the effects can be viewed

separately.

,_ _ures 4-27 and 4-28 show the queueing model measurements for a selection of the I I)

caches analyzed in Section 4.3.2. Shown are bus bandwidth efficiency, main memory

bandwidth efficiency, and percent performance degradation, plotted as functions of

cache size. Figure 4-27 assumes a two word bus, Figure 4-28 a one word bus.

Sufficient interleaving to transmit cache lines in a single burst (m > line size/buswidth)

is assumed throughout. Other implementation assumptions used are Tbus = 1 cycle,

T a = 3 cycle, and T c = 5 cycle.

Recall from the previous queueing model descriptions that main memory efficiency and

processor degradation are modeled together, independently from bus efficiency. The

decoup}.--d models allow separate views of bus and interleaved memory performance.

The mare memory efficiency and processor degradation models assume that the bus

achieves the full bandwidth supplied by the processor.

149

¢tJ

..O

t-
.m
¢o

(D
¢-.

"o
o_

t'-

..Q

E
¢}

E

¢-
o_
cJ

t-
"o
o_

t-

..o

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

Bus Efficiency

I I l I

128 256 512 1024

cache size in words

Main Memory Efficiency

-_ 2 word block

4 word block

4- 8 word block

words

Tc = 5 cycles

Ta = 3 cycles
Tbus = 1 cycle

ii , ,, ,, , ,

i i ! i

128 256 512 1024 words

E3
!

¢.-

o
o_

"1o

25

20

15

10

Figure 4-27:

Performance Degradation

I I I I

128 256 512 1024 words

Copyback I/D Cache Queueing Model: 2 Word Bus

150

:3
..D

!

0
r.-
03
0

O)
e-

"lO
°_

"13

_3
.Q

E

I

cO

q3
c3

03

°_

"o
c=
t_

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

1.00

0.95

0.90

0.85

0.75

0.70

0.60

25

E3
2O

|

t,-
.o_

15
"10

1=,,,

m 10
nO

5

Bus Efficiency

I._ 2 word block
4 word block
8 word block

128 256 512
cache size in words

Main Memory Efficiency

1024 words

Tc = 5 cycles

Ta = 3 cycles lil

Tbus = 1 cycle

128 256 512 1024 words

Performance Degradation

,

128 256 512 1024 words

Figure 4-28: Copyback I/D Cache Queueing Model: 1 Word Bus

151

The results from Figure 4-27 indicate that with sufficient interleaving (implicit in the

model) and enough bus capacity (speed and/or bus width), large block sizes produce the

least performance degradation and achieve the most memory bandwidth. For a given

cache size, as block size decreases these metrics degrade slowly at first, then rapidly.

The queueing model favors large blocks as long as the cache is large enough to generate

correspondingly low miss ratios. Miss ratios fail to decrease significantly with

increasing block size, for a certain minimal cache size (see Figure 4-10). In these

benchmarks, this happens for a 64 word cache.

The queueing model, however, does not indicate that the traffic has been decreased by

the interleaved memory. The bus bandwidth efficiency is best for small lines. Bus

traffic increases with line size because the decrease in miss ratio afforded by large lines

does not outweigh the cost of transferring larger lines. Since bus traffic and therefore

occupancy increases with line size, bus bandwidth efficiency decreases, i.e., the

bandwidth achieved by the bus becomes proportionally smaller than the bandwidth

required by the system.

These results should be considered a refinement of the conclusions reached in Section

4.2.4. Previously, miss and traffic ratios were used to compare different caches. The

conclusion was that medium sized (four word) blocks produce the best tradeoff between

miss and traffic ratio. Similarly, the queueing model presents a tradeoff between the

bus bandwidth efficiency vs. memory bandwidth efficiency (and processor

degradation). Again, medium sized blocks appear to display the best characteristics.

Figure 4-28, when compared with Figure 4-27, illustrates that in a system with a one

word bus, eight word blocks lose much of their advantage over smaller blocks. In the

one word bus system, bus efficiency degrades more rapidly with increasing block size.

The main memory efficiency also degrades significantly for large blocks in the one

word bus system. Note that in the models of Figures 4-27 and 4-28, the values of Tbu s

and T c are such that the memory efficiency and performance degradation of two word

block caches do not change. This happens because the advantages of burst mode

transfer are minimal for these parameters. This comparison serves to illustrate a more

general trend in the queueing equations: all the metrics will degrade with decreasing bus

capacity; however, smaller blocks will cause less degradation.

152

4.5.4. Stack and Instruction Buffer System

In this section, a stack buffer model (Section 4.2.2) and instruction buffer model

(Section 4.3.1) are described. The two models are then combined. The data buffer can

be either a choice point buffer, stack buffer or E-stack buffer, since all are managed in a

similar manner. Instructions which allocate an object may copyback a dirty portion of

the buffer to make room for the new object. This operation is preallocation, but not

prefetch, i.e., objects are never read in from memory. Other instructions manipulate the

top of stack, possibly invalidating the buffer, but this never requires copyback. Memory

references to the valid portion of the buffer are serviced from the buffer, whereas other

references are serviced from memory. However, buffer misses never imply

replacement or copyback.

A stack buffer model similar to that of a write-through cache [Flynn 87] is used.

Management is modeled with three arrival rates, read misses krmiss, write misses

kwmis s, and copyback requests _'copy" Misses reference a single word. Preallocation

instructions copyback a variable sized block. Write misses and copyback requests are

combined into a single stream, _'1, with a service time T 1. The effect of memory

interleaving is modeled by reducing the _-1 arrival rate by the interleaving factor, rn.

The valid range of m in the model is constrained by the number of outstanding write

misses and copybacks that the processor can sustain. In the previous cache model, m

does not appear explicitly, and is inherently constrained to retain validity. Read misses

form a separate stream, k 2, with service time T 2. These arrival rates and service times

can be combined using an M/G/1 model (Equations (4.5)-(4.?'_).

'l= ('wmiss+ L*_'copy)/m

T 1 = T c

T 2 = T c - Tdead

T_ad-- T a,

where

_'rniss= _'d*M'Rd -":_'rmiss+ _'wmiss

_'copy= _'d*PR,

for stack buffer miss ratio, MRd, prefetch ratio (ratio of preallocation instructions to

153

memory references), PR, and average copyback block size (in words), L. krmJs s and

Xwmis s are calculated with read and write stack buffer miss ratios. Note that MR d and L

are dependent, whereas PR is independent, of buffer size. The Tdead term in T 2 is

introduced for the same reason as in the cache model of the previous section. Recall

that the Tdead heuristic models feedback within the queueing equations, to approximate

the behavior wherein the processor stops issuing requests between issuing a data read

miss and receiving the result.

This model lumps copyback in the arrival rate, treating all requests independently. L is

measured in units of words (stack buffer entries), rather than buswidths. Buswidths

would be more accurate, and somewhat lower, if the bus is wider than one word. A line

oriented stack buffer would permit splitting the model, where the copyback service

time, Tcopy, assumed pipe!ineci _ransfer of lines (as in copyback cache model). Line

oriented buffers are not modeled in this dissertation.

The calculation of)'copy is made by determining the ratio of preallocation instructions

(allocate, try, try. me else) to memory requests. The assumption implicit in

this calculation is that the preallocation instructions are infrequent, so that the peak

sustainable rate is approximately the same as the mean rate over the benchmark

programs.

A look-ahead instruction buffer model, independent of the previous stack buffer model,

is now described. Recall that the instruction buffer has a traffic ratio greater than one.

Here, a memory module is described with two arrival rates and service times

corresponding to two types of events: sequential instruction execution and taken

branches. All instruction references cause prefetching of new instruction words of

equal size. A taken branch, however, indicates a miss in the buffer, causing the

prefetching of an entire buffer, d buswidths in size. These arrival rates and service

times are combined with an M/G/1 model:

T 1 =T¢

T 2 = Tline = max(Ta+(d- 1)Thus,To),

where _i is the instruction word request rate and MR i is the instruction buffer miss ratio.

For instruction prefetching, Tdead is not appropriate in T 2 because the processor does

154

not stall. Assumptions made above are that the instruction requests are distributed

uniformly across the modules and that the buffer size, d _<m.

A stack buffer configured with an instruction buffer can be simplified by combining the

fin-st streams of each with an M/G/1 model:

-1 = (-wmiss + L*_'alloc + _'i)/m

= _.i*MRi

T 1 =T c

T 2 = Tline = max(Ta+(d- 1)Tbus,Tc),

where

An M/G/1 asymptotic model for the stack buffer configuration is similar to that of the

previous section. A bus for this system is modeled as in Section 4.5.2, with

_'bus = _'miss + L*_'alloc + _'i + _'i*MRi *d"

Figures 4-29 and 4-30 show the stack buffer queueing model measurements. Percent

processor degradation and bandwidth efficiency are plotted as functions of stack size.

A set of curves is shown corresponding to different interleaving factors. It is assumed

th;_ each b::÷t'er is co, f_gured with a three word instruction buffer. A one word _,_s

with Tbus_-: cycle, To=5 cycles, and Ta=3 cycles is also assumed. For stack buffers, a

mean PR=0.028 and L=6.8 words have been calculated across the benchmarks. The

value of PR justifies the previous assumption that a peak allocation rate is not

necessary. Figure 4-30 includes two curves for bus efficiency, _bus, corresponding to

Thus = 1 cycle and Thus=0.5 cycles.

Note that performance degradation for the stack buffer configuration is calculated with

respect to the ideal performance of a processor with a local memory of unlimited size.

Alternatively, degradation can be calculated with respect to the ideal performance of a

processor with a stack buffer of unlimited size (increasing the size of the look-ahead

instruction buffer will not significantly improve its performance). It is useful, however,

to calibrate all degradation statistics with respect to a single baseline.

155

a
!

0
°_

'10

45

40

35

30

25
I I I l !

16 32 64 128 256

stack buffer size in words

•.a- 4-way

-*- 8-way
-=- 16-way

Figure 4-29: Stack Buffer Configuration: Performance Degradation

E

E

!

(9
t-

om
(9

¢..

"13
°_

"O
¢-.

t-_

0.90-

0.85

0.80

0.75

0.70

1:,wayI8-way16-way

bus frbus=l)___ bus (Tbus=0.5)

I I I I I

16 32 64 128 256

stack buffer size in words

#

Figure 4-30: Stack Buffer Configuration: Memory Bandwidth Efficiency

156

Figure 4-29 indicates that degradation decreases with increasing stack buffer size and

interleaving factors. The rate of improvement decreases, however. This implies that a

cost-performance optimum may be reached with mid-size buffers. The precise

optimum depends on how cost increases with buffer size and interleaving factor, a

function of technology. For instance, a 128 word stack buffer with 8-way interleaving

may have the best cost-performance.

The bus efficiency for Tbus=l is rather low, falling between the 4-way and 8-way

memory efficiencies. To avoid bus saturation, the bus capacity should be increased, by

increasing the bus speed or width. As shown in Figure 4-30, by increasing the bus

speed by a factor of two (Thus=0.5) the bus efficiency jumps from about 0.78 to 0.88 for

256 word buffers. If bus capacity is increased by widening the bus, stack buffer entry

size should be made equal to (or larger than) bus width to exploit the increased capacity.

In such a case, multiple word stack buffer entries may be an improvement in a VLSI

implementation. If the bus capacity is not increased, over-designing the main memory

should be avoided under these conditions. The memory need only be designed to

handle the 75%-80% of the bandwidth offered by the processor, achieved by the bus. A

4-way interleaved memory is likely to be sufficient in this situation.

4.6. Summary

In this chapter, two-level memory hierarchies are defined for sequential Prolog

architectures. The memory model consists of a fast local memory and a slower, larger

interleaved main memory. Recall that in the previous chapter, architecture mern_)ry-

re;erencing characteristics are ba_ed on the zeroth-order statistic of the number of

memory references made. The local memory performance measurements presented in

this chapter are based on first-order statistics such as traffic ratio. The interleaved

memory performance statistics presented at the end of this chapter are based on the

higher-order statistics of miss penalty, performance degradation, and bandwidth

efficiency. This progression of refinement in the models allows increasingly detailed

analysis of the referencing behavior of Prolog programs executing on complex hosts.

Several local memory models are presented in order of increasing performance, cost,

an,_ generality. Envisioning a single chip microprocessor, the local memories

considered are small (up to 1024 3,2-bit words). Initially, only data referencing is

considered. At the low end, a single choice point buffer as small as 12 words offers a

miss ratio of 0.55 and a traffic ratio of 0.62. A stack buffer of only 64 words offers a

• 157

miss ratio of 0.28 and a traffic ratio of 0.30. The stack buffer, more complex than the

choice point buffer, captures both choice point and environment references. A

copyback cache, capturing all types of references, does better still -- a 256 word cache

(with four word lines) offers a miss ratio of 0.05 and a traffic ratio of 0.23. At the high

end, smart caches, which avoid transferring lines no longer in a valid storage area,

reduce the cache traffic ratio by up to 30%.

Local memories for instruction references are also analyzed. Measurements of both

instruction buffers and caches are presented, allowing comparison of alternative local

(instruction + data) memory configurations. At the low end, the stack buffer

configuration offers better memory performance than the caches because cache traffic

increases rapidly with decreasing cache size. At the high end, split 1+]3 caches display

the best memo_ performance: however, the trend indicates that for larger caches, the

combined UD cache might achieve equal performance. Although the combined I/D

cache is slightly less costly to implement in VLSI than a split I+D cache, the latter

offers twice the bandwidth to the CPU.

These results clarify the discussion in Chapter 2 concerning the relationship between the

traditional and register-based CIFs. As is indicated in this chapter, caches, which

capture all types of references, offer greater reduction in memory traffic and higher hit

ratios than stack buffers. At little extra cost, a cache-based host may implement a small,

fast register set. Such hosts are expected to gain little advantage with the traditional

CIF as compared to the register-based CIF (some reduction in instruction bandwidth can

be expected m as much as 16% as is shown in Chapter 3). Thus the WAM, a register-

based DCA, is seen to be well-suited for realistic Prolog hosts. In fact, the WAM also

performs quite well on a host with a stack buffer (and register set), as is shown in this

chapter. These results do not preclude the superiority of a traditional-CIF DCA for

other types of hosts, e.g., a host with only a large stack buffer.

The second-level main memory and memory bus are analyzed with asymptotic M/G/1

queueing models, for alternative local memory configurations. Queueing models are

beneficial primarily because they reintroduce time into the previous local memory

models, allowing the calculation of second-order statistics, such as miss penalty. The

queueing models are driven with a peak sustainable memory request rate corresponding

to a WAM processor execution rate of approximately 100 application KLIPS. This

peak request rate parameter is calculated in the emulator with the PLM timings [Dobry

85], assuming a 100 nsec cycle time and one cycle memory latency. In the uniprocessor

organizations considered in this chapter, main memory and bus performance are

158 •

characterized with statistics for performance degradation and bandwidth efficiency (the

fraction of the bandwidth required by the system, supplied by the memory or bus). The

main memory and bus are modeled independently to allow separate views of the system

components. Alternatively, the queueing models could be coupled to produce a single

metric of system performance.

Both a combined I/D cache configuration and a stack buffer + instruction buffer

configuration are analyzed. For the I/D cache, memory bandwidth efficiency is

maximized with large cache blocks. Bus bandwidth efficiency, however, is maximized

with small cache blocks. These results support the previous first-order statistical

results, indicating that medium size (four word) blocks appear to display the best

tradeoff of characteristics. The selection of block size is also shown to be dependent on

bus width. In general, with decreasing bus capacity, small blocks cause the

performance and efficiency metrics to degrade more slowly than do large blocks.

For the stack buffer configuration, main memory bandwidth efficiency improves with

increasing interleaving. In contrast to the cache configuration, where interleaving is

implicitly limited by block size, the stack buffer configuration can take advantage of

larger interleaving factors. This is because the stack buffer is managed by copying-back

groups of stack entries. Copybacks, write misses, and instruction read requests are

assumed to be uniformly distributed across the memory modules. Large interleaving

factors offer the stack buffer configuration greater memory bandwidth efficiencies than

the cache configuration, for approximately equal size local memories.

The bus e.". iency of the stack buffer configuration is son,_',chat infeuor to that of the

cache conf, guration. For equal capacity buses and local rr_emory sizes, the 256 word

stack buffer configuration bus efficiency falls between the bus efficiencies for the four

and eight word block cache configurations. The stack buffer configuration bus

efficiency does not significantly improve with increasing local memory size, as in the

cache configuration. These results can be attributed to the higher miss ratios of the

stack buffer and the look-ahead instruction buffer as compared to the UD cache miss

ratio. As discussed, the stack buffer is limited by capturing only stack references, and

the look-ahead instruction buffer is limited by the branch frequency. In contrast, the UD

cache captures all reference types and can also capture loops.

The performance degradation of the stack buffer configuration, calculated with respect

to the same baseline as the cache configuration, is significantly higher than that of the

cache configuration. The minimal achievable performance degradation is constrained

• 159

primarily by the previously mentioned high miss ratio of the stack buffer configuration.

For instance, for 16-way interleaving, the benchmarks measurements indicate a minimal

limit of about 25% degradation. In comparison, even a 256 word UD cache

configuration (with four word blocks and one word bus, implying 4-way interleaving)

can achieve about half this degradation. Large caches achieve less than 5%

performance degradation.

In the next chapter, similar analysis and performance measurements are given for

parallel Prolog executing on shared memory multiprocessors. The difficulties

encountered in extending the models of this chapter to a multiprocessor include both

memory design (e.g., how to efficiently maintain consistency in a two-level hierarchy)

and memory analysis (e.g., how to accurately represent multiple processing elements

within a simple queueing model).

160

161

Chapter 5

Multiprocessor Memory Organizations

In this chapter, two-level memory hierarchies are defined and analyzed for the

Restricted AND-Parallel Prolog (PWAM) architecture (reviewed in Section 2.3).

PWAM is chosen for study in this dissertation for several reasons. It is an extension of

the Warren Abstract Machine (WAM), which allows fair comparison between

sequential and parallel Prolog architectures. It is designed to execute sequential code

efficiently with a modified WAM storage model. High-level measurements presented

in Section 3.5 support this criterion. It is designed to execute parallel code with low

communication and parallelism control overheads. Measurements are presented in this

chapter which support this second criterion. The results from the RAP-Prolog

benchmark measured indicate, for example, that a tightly-coupled shared memory

multiprocessor with eight high-performance processing elements coupled with a 32-way

interleaved memory and a high capacity bus can achieve a speed-up of 750%.

5.1. Memory Model

RAP-Prolog programs are modeled executing on a shared memory multiprocessor

model. Many alternative types of multiprocessors [Mak 86] have been designed for the

execution of procedural/scientific programs. These organizations offer high

performance by incorporating distributed memories and complex interconnection

networks. The approach taken in this dissertation is to measure PWAM under the

assumptions of a relatively simple multiprocessor model to acquire insights into the

memory bandwidth requirements of PWAM. There are currently few published results

concerning the execution performance or memory characteristics of parallel logic

programs. Therefore little intuition exists, as it does for procedural/scientific programs,

as to the best multiprocessor configurations. The first step in this evolutionary approach

was taken by Hermenegildo m an abstract shared memory with no contention was

assumed for the design of PWAM [Hermenegildo 87b]. The simple memory model

used in this dissertation extends Hermenegildo's model and is sufficient to indicate

communication costs and the effectiveness of local memory designs. With the

PRE6F..DING PAC_ BLANK NOI t:LMEi_

162

flexibility of the simulation and queueing models presented here alternative memory

design parameters can be explored.

LOCAL _!

MEMORY I_
LOCAL i

MEMORY

Q00

1
LOCAL

MEMORY N

SHARED

Figure 5-1: Multiprocessor Shared Memory Model

The multiprocessor system model considered in this dissertation, as illustrated in Figure

5-1, consists of a shared memory connected to a set of identical processing elements

('PEs), each with a private, local memory. Each PE references its own local memory,

which if it misses, makes a request to shared memory. One PE cannot directly access

another PE's local memory, nor can a PE directly steal a shared memory request from

another PE and satisfy it. The shared memory consists of a set of identical memory

modules. The modules are connected to the PEs with an interconnection network.

Similar to the analysis of the last chapter, queueing models are developed to determine

the performance of the interleaved shared memory and the efficiency of a single shared

bus interconnection network.

A single shared bus system represents only one of several alternative multiprocessor

configurations. Of course, a single bus interconnect cannot be used in a parallel system

of arbitrary size; however, it is a reasonable organization for a tightly-coupled PWAM

shared memory multiprocessor using a limited number of high-speed PEs. Figure 5-1

163

illustrates such an organization. The single bus allows all PEs to simultaneously view

all memory requests and acts as an arbiter to resolve races to update looks (described in

detail in later sections).

The memory referencing characteristics of PWAM are of interest to determine the cost,

in terms of increased memory traffic, of exploiting parallelism. There are various

overheads involved. These are listed below. The first is not analyzed in this

dissertation.

• CGE conditions m To execute a conditional graph expression (see

Section 2.3), evaluation of conditions at runtime may be necessary.

• control of parallelism -- Extra bookkeeping references (not present in the
WAM) are necessary in PWAM to control parallelism. Measurements of

this overhead are presented in Section 3.5.

• loss of locality m The WAM stack is a private area, yet the PWAM objects

allocated to it, for the most part, are used for process management, a global
function. This implies that some percentage of sequential performance has

been sacrificed to implement the mechanics of the PWAM model. The

performance loss is due to reduced memory locality, a result of mixing

choice points and environments with Parcall Frames and Markers. Note

that the RAP-Prolog benchmark analyzed is determinate, so that no
Markers are used. Therefore locality measurements presented include only
the effects of Parcall Frames.

• coherency overheads -- To solve the consistency problem in certain
multiprocessor organizations, overhead traffic is generated.

PWAM (and its relative, the WAM), is an abstract model above the level of the memory

organization. In other words, specifications for caches and other hardware

organizations are not included i.n the architecture. A problem of maintaining

consistency among the local memories arises when mapping the architecture onto a

two-level memory hierarchy. PWAM avoids copying of passed arguments (i.e.,

copying at the architecture level) by having a child process access its arguments

nonlooally from a parent process. This method of "on demand" access is in a sense

optimal because no overheads are invoked for portions of passed arguments that are not

used. However, a two-level shared memory hierarchy causes nonlocal-access

consistency problems. These can only be solved by copying at the memory

organization level. This problem implies that the advantages of avoiding argument

copying will be lessened because of the extra memory traffic generated when retaining

consistency.

Many of the local memory designs presented in the previous chapter cannot be used

164

within the shared memory model because these local memories cause consistency

problems. In the next section the consistency problem is defined in detail. Coherent

local memory models are described and measurements of their efficicncies arc

presented.

5.2. The Consistency Problem

The consistency or coherency problem refers to the management of local memories in a

multiprocessor system, ensuring that each processor sees a consistent view of the virtual

address space. The consistency problem is composed of two parts: keeping the shared

memory consistent with a local memory, and keeping the local memories consistent

with each other. Rather than give a general description of the consistency problem (see

Censier [Censier 78] for instance), a description specific to PWAM is given in this

section.

P_ -\M can be considered a wo,_ driven paradigm (c.f. process driven paradigm),

where parallel call goals are stacked (in the Goal Stack) by a parent process. An idle

processor can access one of these goals and initiate a child process. The consistency

problem is best illustrated by considering the simple case of two processors. Assume

the parent and child processes reside on different processors. The child process

references argument structures in the stack and heap of the parent process. A structure

consists of ground terms and unbound variables. For instance, if the goal contained an

argument instantiated to the structure £ (a, Z), the ground terms are the structure f/2

and the cor, stant a/0. The unbound variable ts Z. When iocal memories exist, the

followir, g problems can occur:

1. If the local memories are copyback managed, the passed _tructure may
exist (in most recent form) in the parent processor',. !ocal memory, but not

in shared memory. Since the child processor cannot direct access the

parent processor's local memory, there is a consistency problem.

2. Unbound variables of a passed structure are no longer valid in the parent

processor once the parallel call is entered. The variables won't be
referenced until after the parallel call is exited; however, at this point, the

variables are not guaranteed to be up-to-date (the child process may bind

them).

3. If the local memories are copyback managed, the solutions (bindings for

previously unbound variables in the passed arguments) produced by the
child process may exist (in most recent form) in the child processor's local

memory, but not in shared memory. This consistency problem is

symmetrical to 1.

165

4. Unbound variables in the passed structures are no longer valid in the child

processor after the child process succeeds, if subsequent processors bind
them. This consistency problem is symmetrical to 2.

As is apparent from the above description, consistency need be ensured only at process

invocation and completion, i.e., process boundaries. While a process is running, it is

guaranteed, by PWAM, not to modify shared data, and therefore consistency need not

be ensured. For instance, a standard local memory could be made consistent at these

process boundaries by invoking a software manager which operated locally (making

worst case assumptions concerning which data object will be shared after the process

boundary is crossed). It is more efficient, however, to" ensure consistency

incrementally, for each memory reference, with coherent local memories. Historically,

the first such coherent caches proposed used a write-through strategy for all writes

[Gibson 67]. A write to a block '&at is shared among the caches causes invalidation of

all remote copies. This is considered the least costly and lowest performance solution.

Cache coherency protocols recently proposed in the literature, although designed

primarily for scientific multiprocessors, can also be used for implementing a PWAM

multiprocessor. A family of fully distributed broadcast cache synchronization schemes

is described by Bitar [Bitar 86a] and measured by Archibald [Archibald 86]. Two main

variations of broadcast cache protocols are analyzed here. Both are idenucal except for

how they handle a write to a block that is possibly shared among the caches. The first

scheme ("write-in") involves writing into the local cache only, and invalidating shared

(remote) copies. The second scheme ("write-though") involves writing-through to

remote copies (and shared memory), i.e., shared copies are updated. These are high

cost, high performance solutions. Traditional write-through cache schemes should not

be confused with the write-through broadcast scheme. For traditional write-through

caches shared memory is updated for all writes. The write-through broadcast scheme

indicates that only "possibly shared" blocks (as indicated by the blocks' status) are

written-through. This broadcast scheme implies that dirty blocks may exist which need

to be copied back to memory upon replacement.

Prolog architectures have several advantages over traditional architectures which should

alleviate the complexity and cost associated with broadcast caches, if properly

exploited. A variation of the proposed write-through broadcast caches and traditional

write-through caches, called a partial write-through or hybrid cache, is analyzed as an

example of this type of solution. The hybrid cache is a compromise between the

simplicity/inefficiency of a traditional write-through cache, and the

166

complexity/efficiency of a write-through broadcast cache. The hybrid cache, described

in detail in a later section, is simpler than the broadcast model in one major respect:

blocks do not require an access status (such as private or shared). The proposed

broadcast schemes use the status to determine if a write-through is needed. The hybrid

cache writes-through references by static type, not by dynamic status.

5.2.1. Broadcast Cache Coherency

Recently proposed coherent caches are based on copyback caches with the attribute that

shared memory need not be consistent at all times with the local memories. The local

memories must still be consistent among themselves. In this dissertation, these schemes

are collectively called broadcast cache models. An abstract model is developed here

encompassing a family of fully dismbuted broadcast caches, as described by Bitar

[Bitar 86a]. The model abstracts the traffic behavior of the various individual

protocols, without specifying management detai! The model assumes that each local

cache line has an access status. Most proposed statuses include the concepts of private

(the line is resident only locally) and shared (the line is resident locally and possibly

resident remotely). Line status is used by a particular protocol to determine how to

manage read and write requests. There are many design options available in these

protocols, but only one is a major concern here: the treatment of a write to a possibly

shared line. There are basically two ways to do this write: write-through and write-in.

In the following discussion, a write-allocation policy is assumed. Recall that write-

allocation fetches the target of a write miss into the cache.

A write-through strategy updates remote copies, and possibly shared memory. During a

write to a shared line, the processor first arbitrates for the bus. After getting control of

the bus, it places the address and the value on the bus (this is known in the literature as a

write-broadcast). Other caches communicate back if they had copies. If there are no

remote hits, the cache changes the status of the block from shared to private, otherwise

the status remains shared. Assuming that handshaking is not needed, the action requires

only a minimal bus transaction cycle.

In its most general form, a write-through synchronization policy need not update shared

memory. In some systems, it may be advantageous to avoid the update, e.g., if the bus

cannot be used to simultaneously write to both remote caches and shared memory, or if

the shared memory is very much slower than the caches. For instance, the Dragon

computer does not update shared memory [Archibald 86]. In this dissertation, hardware

167

is assumed that benefits from simultaneous update of shared memory. In most systems,

the status of a line cannot indicate, with absolute certainty, if a line is shared because

natural replacement may independently remove all remote copies. In this case, the

write-through policy will accomplish only an update of shared memory.

A write-in, write-back or copyback strategy is based on the restriction that to write a

line, the line must be privately cached by the writer. During a write to a shared line, the

processor first arbitrates for the bus. After getting control of the bus, it places the

address and an invalidation command on the bus. The line is then updated locally and

marked private. Shared copies can simply be invalidated, and need not be copied back,

because they cannot be dirty. Private lines may be dirty, and require copyback either on

request from another cache or by natural replacement. The write-through scheme can

also produce dirty lines, depending on file policy concerning writes to non-shared lines.

For example, the Firefly computer uses write-broadcast on shared lines and write-in on

non-shared lines [Archibald 86].

5.2.2. Locking in Broadcast Caches

An interesting operation to analyze for the two broadcast schemes is the use of locks to

protect data structures from two or more processors racing to update. Locks are

frequently used, in PWAM and'other architectures, to protect process management

structures. The following discussion [Bitar 86b] serves two purposes. Its first purpose

is to indicate that the two coherency protocols implement locks efficiently, i.e., without

generating excessive memory traffic. Its second purpose is to compare the efficiency

with which the two protocols implement locks.

A lock is a single location which one of several processes can set (e.g., to one). The

locked-out processes continue to read the lock, waiting for the lock to be released (e.g.,

to zero). This type of read loop is called a busy wait. When the lock is released, the

waiters race to set the lock for themselves. Each busy wait loop surrounds a

read-modify-write operation intended to set the lock. The read-modify-write operation

is an atomic action, i.e., it commands the bus for the duration of its execution. Thus

only one read-modify-write can be executing in the entire system at any one time. If

several busy wait loops are entered concurrently, more than one read-modify-write may

be attempted, but only one will get control of the bus. The others will be aborted and
#

retried. For write-through, a successful read-modify-write (i.e., one that passes the read

test) issues a write on the bus. For write-in, a successful read-modify-write issues an

168

invalidation command on the bus. An unsuccessful read-modify-write releases the bus

immediately.

A processor busy waiting for a lock continually reads a copy of the lock (with a value of

one) in its cache. For the write-through policy, when the lock is unlocked by another

processor, the zero is written to all caches having a copy of the block. A waiting

processor then reads the zero during its next busy wait iteration, and iniuates a read-

modify-write in an attempt to set the lock. Races between concurrent attempts to set the

lock are naturally resolved because the read-modify-write operation is atomic,

commanding the bus for the duration of the action. The winner's read-modify-write

checks that the lock still has a zero value (which it does) and sets the lock to one,

writing through to all caches having a copy of the block. Subsequently, a processor

which already issued a read-modify-write, checks the set lock in the read part of the

read-modify-write and aborts its action. The processor then resumes busy waiting. A

waiting processor which did not yet issue a read-modify-write, avoids issuing one

because it reads the set lock in its cache.

For the write-in policy, when the lock is unlocked by a processor, the block is

invalidated in all remote caches having a copy of the block. A waiting processor then

takes a cache miss for the lock read request made during its next busy wait iteration.

The cache block is fetched and the busy wait loop continues as before. If the value is

zero, the waiting processor initiates a read-modify-write in an attempt to set the lock.

Again, races are resolved by virtue of read-modify-write's atomicity. If the read-

modify-write read value is one, the waiting processor resumes looping. Note that il is

important in t?lis scheme that upon a miss, a cache enter _he target address in its address

translation directory, in anticipation of a possible invalidation of the target before the

miss is serviced.

The cost complexity and performance of busy wait under assumptions of the two

policies appears to be equal because waiting processors need not reference shared

memory within their busy wait loops. The write-in policy is slightly less efficient than

the write-through policy because all waiting processors must service cache misses when

the lock is released. For the PWAM model, this overhead is not significant because

multiple processors rarely wait for the same lock. Recall, from Section 3.5, that busy

waiting is used in the PWAM model by parent processes which are waiting for all their

parallel goals to complete. The alternative policy, of switching out a waiting parent

process for a runnable process, was not modeled because it would be less efficient for

the simple benchmark measured.

169

5.2.3. Hybrid Cache Coherency

A new proposal for a coherent cache scheme targeted for RAP-Prolog is described in

this section. The objective of this scheme is to combine the simplicity and low cost of a

traditional write-through cache, with the efficiency of a write-through broadcast cache.

The proposed cache is called a hybrid or partial write-through cache, because certain

types of data are written-through and others are copied back. The basic idea is that

shared memory is kept consistent with the caches by writing-through a certain subset of

all write references, and that cache-to-cache consistency is kept by write-broadcasting a

certain subset of all written-through references. The hybrid cache protocol and its

motivations are developed in detail in the remainder of this section.

As summarized in Table 2-7 (Section 2.3), objects in the PWAM storage model can be

categorized as local and global. Within a given process's storage segment, local objects

can only be referenced locally, i.e., by that process. Global objects, however, can be

referenced both locally and globally, i.e., by other processes (possibly running on other

processors). Thus writes can be categorized as both local and global. Whether a write

reference issued by some PWAM instruction is local or global, is known statically

because the instructions manipulate the storage model in a regular and highly structured

manner. The host therefore can easily determine which write references are local and

which are global.

To keep shared memory consistent with the caches, the following policy is used. Local

references are copyback managed by the hybrid cache. Global references, except for

communication references (Goal Stack and Message Buffer references), are write-

through managed. It has been determined here that the communication references have

little locality, so that making them non-cacheable does not significantly affect memory

traffic. The capability of the hybrid cache to copyback, write-through or bypass the

cache for individual references is similar to that of the Fairchild Clipper [Fairchild

86] (although the consistency protocol is not similar to that of Clipper). In the Clipper

architecture each virtual memory page is marked as copyback (write-in), write-through,

or non-cacheable. The hybrid cache model allows each individual reference, as marked

by the host, to be similarly treated.

Write-broadcast is used to guarantee cache-to-cache consistency; however, unlike

previously proposed write-broadcast schemes, no access status is kept for each cache

line, thus reducing complexity and cost. Various access status protocols were

developed over the past years with the primary goal of reducing consistency traffic.

170

The hybrid cache reduces consistency traffic by write-broadcasting only a small subset

of all write references. This reduction in traffic, without status, is possible because of

some sympathetic attributes of Prolog and RAP-Prolog, as described below.

The traditional problem of multiple, concurrent writers for a shared line is greatly

reduced by RAP-Prolog. Two processes can safely write to their own copy of a shared

line, each updating the other. The writes are guaranteed by RAP-Prolog to update

different words within the same line. Races can still occur, however, at the level of

process management. To prevent this, locks are still needed to protect process

management data structures.

Prolog can be viewed as a single assignment language because within a clause

containing only determinate goals, logical variables can be bound only once. In clauses

with nondeterminate goals, logical variables may be bound and then rebound due to

backt_r:,,:king. Writes are comprised of:

• _ructure creation writes (creating structure on the top of the heap)

• binding writes (binding a previously unbound variable)

• unbinding writes (during detrailing upon failure)

• bookkeeping writes (e.g., creating choice points)

• process management writes (e.g., signaling the completion of a process)

In PWAM, a processor need only broadcast a subset of those global writes that are

written-through: (un)binding writes (i.e., both bindings and unbindings), and global

Parcall frame writes. Communication write_ (to Gc, al Stack and Message Buffer_ need

not be broadcast because they are chosen to be non-cacheable. Heap write,_ :turing

structure creation (on the top of the heap) need not be broadcast because newly created

structure cannot be shared. Note that this optimization is akin to filtering methods first

proposed by Censier [Censier 78].

It should be stressed that in the proposed broadcast schemes of the previous section,

invalidates or writes-throughs are performed only if the line Status indicates to do so.

This greatly reduces the amount of traffic, but implies that shared memory and local

memories are not necessarily consistent at all times. Therefore, a read miss may have to

be serviced from another local memory. An underlying tenet of the hybrid cache

scheme is to avoid this complexity by keeping shared memory consistent with local

memory. The cost of this is the traffic required to write-through a subset of the

processor write requests. As discussed above, to maintain consistency between local

memories requires broadcasting a subset of the write-throughs.

171

The optimization of broadcasting only a subset of write-throughs is beneficial only if

broadcasts have a significant cost. Otherwise, requests selected for write-through to

shared memory are simultaneously broadcast. Since the caches spy on the shared

memory bus, a broadcast itself does not cost more than a write request. However, each

cache must check a broadcast address. If the cache address translation directory does

not have a dedicated port for this check, unnecessary broadcasts incur overheads.

writes CHAT PLM QC1 ILl
trails 51082 14156 22685 4599

bindings 77478 29616 45602 12963

unbindings 49279 8213 9466 3512
heap+perms 192245 147676 160226 83694
writes 700422 717946 647358 300950

1-trails/bindings 0.34 0.52

1- (heap+perms)/writes 0.73 0.79

1-(un)bindings/(heap+perms) 0.34 0.74

Table 5-1: Prolog Binding Statistics

0.50 0.64
0.75 0.72

0.66 0.80

Table 5-1 shows the WAM binding statistics. The binding operation is combined with a

trail test, necessary to implement backtracking. The number of trail writes is therefore

less than (or equal to) the number of binding writes. During failure, an unbinding

occurs for each trailed binding, with the following exceptions. As described in Section

3.4, an "inverse trail test" is used to reduce the number of unbindings. In addition, if

choice points remain after the program completes, trailed bindings may remain (that

were never unbound). Also shown are the number of writes to the heap and to

permanent variables (heap+perms), i.e., the number of write-throughs. Lastly, the total

number of writes is given.

Three efficiency statistics are presented in Table 5-1, calculated from the ratio of trailed

bindings (trails) to bindings, write-throughs (heap+perms) to writes, and (un)bindings to

write-throughs. The first statistic indicates the efficiency of the trail test. Notice that

CHAT is least efficient, requiring the most trails, a result of its nondeterminacy.

The second statistic approximates the write-through efficiency in the hybrid cache,

although PWAM will be less efficient because of additional global references. About

25% of all writes (and 12% of all references) require write-through. For traditional

sequential architectures, similar optimizations can be used to reduce write traffic for

maintaining consistency. Mulder [Mulder 87b] reports that approximately 25% of

172

references in typical Pascal programs are to potentially shared objects and that 25% of

references are writes. Therefore about 6% of all references require write-through.

The third statistic approximates the broadcast efficiency. From 20% to 66% of the

write-throughs require broadcast. Again, CHAT is least efficient. Note that in the

simulation results presented in Section 5.3, the model assumes that shared memory

update and write-broadcast proceed concurrently. Thus the previous optimization of

broadcasting only a subset of write-throughs is not needed in the simulator because no

additional overheads are incurred for broadcasts (e.g., contention for cache directory

access, as previously mentioned).

5.3. Coherent Cache Measurements

The various solutions to the consistency problem for RAP-Prolog executing on a shared

memor)., multiprocessor with local memories are discussed in the previous section.

These t,.,herent local memory designs include:

• traditional write-through cache

• write-in broadcast cache (invalidates remote copies on write)

• write-through broadcast cache (updates remote copies on write)

• hybrid cache

Measurements of the efficiency of the above designs above are now presented and

analyzed. The models were simulated executing the Sderiv benchmark presented in

S_-,_:_on 3.5. Recall -hat Sderiv is ,_ synthetic version _,f Warren's syrn_,,,lic

dilterentiation benchm- k. It is hypoth_.,ized that the Sden_ behavior under these

models resembles that of larger benchmarks. If this is true, conclusions drawn in this

section can be extrapolated to RAP-Prolog programs in general. The Sderiv benchmark

accurately models parallel programs that do not require the expensive evaluation of

CGE conditions at runtime. The benchmark represents programs wherein parallel goals

do not manipulate a large number of terms passed by the parent. Conversely, the Sderiv

benchmark does not accurately model programs with frequent evaluation of complex

CGEs and extensive unification of passed structures. The Sderiv experiments allow, at

the very least, comparisons between alternative coherent memory designs.

Con_ider the evidence that shows that Sderiv behavior resembles that of larger

benchmarks. In Section 3.5 it is shown that sequential Sderiv displays the referencing

characteristics of the large WAM benchmarks. The local memory characteristics of

173

sequential Sderiv and the large WAM benchmarks are compared in Figures 5-2 and 5-3.

These figures show the performance of a four word line data cache (throughout this

chapter, only four word line, write-allocate data caches are considered -- in general,

two word lines offer slightly lower traffic). For these copyback data caches, Table 5-2

gives the number of standard deviations the hit and traffic ratios of Sderiv are from the

mean statistics of the large WAM benchmarks. The Sderiv benchmark fits rather well,

conservatively biased to lower hit ratios and higher traffic ratios. Again, one cannot

confidently extrapolate the parallel behavior of the large benchmarks from Sderiv alone.

A close fit ensures that the programs exercise the sequential storage model (the

foundation of the PWAM storage model) in a reasonable, typical way.

All of the coherent cache models are simulated with the same parameterized

muldprocessor cache simulator. As in the copyback cache simulator, each private cache

is categorized by a number of blocks of a given size (in words). Each cache is modeled

as a fully associative memory with perfect LRU replacement. The simulator is

reconfigurable to support the various consistency protocols. The simulator processes

trace records sequentially, using the cache corresponding to the record's processor

identifier. Cache consistency is maintained for each reference. The simulator models a

system with no cache-to-cache transfer capability. Therefore in the broadcast models, if

the most up-to-date version of a miss target is he]d by a remote cache, the line is flu'st

copied back to memory, and then transferred to the requesting cache.

A modification of the copyback cache simulator (derived from the DELCACHE

program [Alpert 84]) is also used to model sequential hybrid and write-through caches.

This simulator estimates the effect of these consistency mechanisms on the large

sequential benchmarks. These measurements account for the WAM component of

PWAM, but lack the consistency and communication overheads.

Consider write-through and hybrid cache performance of the sequential benchmarks

introduced in Chapter 3. Figure 5-4 shows write-through, hybrid, and copyback data

cache traffic ratios. All write references to the heap and to permanent variables in the

environments are written-through, whereas all other write references are copied back.

The hit ratios of the write-through and hybrid caches are identical to those of copyback

caches of the same size and block size (Figure 4-10). These measurements indicate that

the hybrid cache generates significantly less traffic than the write-through cache. Note

that the hybrid traffic is approximately the same as that of a copyback cache.

Figures 5-5 and 5-6 show the Sderiv traffic ratios of the write-in broadcast cache,

174

1.00 -

0

t..

r.-

0.95

0.90

0.85

0.80 I I | I I

64 128 256 512 1024
cache size in words

-e-CHAT
,4- PLM
-m- QC1

ILl

4- Sderiv

Figure 5-2: Sderiv Fit: D-Cache (4 word line) Hit Ratio

1.00

O

._o
zI::=

0.80

0.60

0.40

0.20

0.00 I I I I I

64 128 256 512 1024
cache size in words

•.a- CI-_T
PLM
QC1
ILl

Sderiv

Figure 5-3: Sderiv Fit: D-Cache (4 word line) Traffic Ratio

, 175

cache size large benchmarks Sderiv

(words) (_hr _tr (hr'Ehr)/ffhr (tr'Etr)/fftr
64 0.0272 0.191 -0.04 0.4

128 0.0134 0.0886 -0.6 1.0

256 0.0103 0.0549 -1.2 1.7
512 0.0103 0.0626 -0.6 1.1

1024 0.0082 0.0569 - 1.6 2.0

Table 5-2: Fit of Sderiv to Large Benchmarks

hybrid cache, and write-through cache, using four word lines. The write-broadcast

cache statistics (not shown) are almost identical to those of the write-in broadcast cache.

This indicates that communication traffic is very low (as is apparent from Table 3-17).

Figure 5-5 shows families of curves corresponding to numbers of PEs, plotted as a

function of total local memory size (i.e., the sum of the individual PE cache sizes).

Figure 5-6 redisplays this data, showing families of curves corresponding to individual

PE cache sizes, plotted as a function of numbers of PEs. The curves in Figure 5-6 are

almost flat, indicating that communication overheads do not increase significantly with

increasing numbers of PEs. When increasing from 4 to 8 PEs, some increase in

overhead, corresponding to indiscriminate spawning of trivial processes, is detected. In

addition, the benchmark's working set is almost completely contained within caches of

512 words or greater.

The hybrid cache generates an amount of traffic between that generated by the

broadcast and write-through caches. Of course, benchmarks doing more

communication must be measured to further compare the schemes. Eight PEs with

write-in broadcast caches of 512 words or greater generate a traffic ratio of about 0.30.

Although for the caches analyzed this is the least traffic generated, it is still high (recall,

from Section 4.2.4, that WAM programs displayed a traffic ratio of 0.16 for a 4 word

line, 512 word data cache). Experiments with greater numbers of PEs were not

conducted because of the limitation of the simple benchmark.

In summary, the RAP-Prolog benchmark analyzed shows slightly increasing

communication overheads with increasing numbers of PEs. For large caches, the hybrid

scheme was shown to approach the performance of the broadcast schemes, as the

number of PEs increase, under the conditions of low communication traffic. For small

caches, the broadcast schemes retain a significant advantage. For a large number of PEs

176

1.2"_

1.0_

o_ 0.8

0.6-

0.4-

0.2

0.0

0.8
0

0.6
¢J

°_
t,(,.,.,

04-
-

0.2'

0.0

_ write-through data cache

2 word block
4 word block
8 word block

| ! ! ! !

64 128 256 512 1024
cache size in words

hybrid data cache

I I | I l

64 128 256 512 1024 words

0
°_

1.2

21

0"2 1
0.0

copyback data cache

I I I I i

64 128 256 512 1024 words

Figure 5-4: Data Cache Traffic Ratios: Sequential Benchmarks

177

lo]0.9 write-in broadcast
0.8

o [-
"_ _l:z_--_ -a- 1PE

,- 2 PE

8 PE

•0.3 -

0.2

0

0

C)
°_

! I

64 128 256 512 1024 2^11 2^12 2^13
total cache size in words

Ooi;- \_........\.±_

0.3

hybrid

0.9

0.8"

0.7

0.6"

0.5

0.4

0.3 _

0.2

I I I I I I I I

64 128 256 512 1024 2^11 2^12 2^13 words

write-through
v

E_4 1:28 256 51'2 1024 2_11 2"_12 :_^13 words

Figure 5-5: Sderiv Traffic Ratios of Coherency Schemes for Varying #s of PEs

178

1.0_

0.9 _

0.8 _

O 0.7

_'- 0.8

0.5

0.4

0.3

0.2

0

1.0-

0.9

0.8

O 0.7
o_

"_ 0.6.
C.)

"-- 5-""_ 0.
"-' 0.4-

0.3

write-in broadcast

- Ii
I I I

1 2 4 8
number of PEs

_ _ J

mB-

D D 13-

1024 word
512 word
256 word
128 word
64 word

.2 i i l ,
0 1 2 4 8 PEs

hybrid

0
.m

¢.)
°_

10

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

41_ ,'w...... -__ =_.' '_

_. t= C, =

write-through

I I I I

0 1 2 4 8 PEs

Figure 5-6: Sderiv Traffic Ratios of Coherency Schemes for Various Cache Sizes

179

(eight), even the best cache scheme generates a significant amount of traffic. This

traffic can be reduced by avoiding the spawning of trivial processes.

5.4. Shared Memory Design

In this section, queueing models are used to analyze the performance of the interleaved

shared memory and bus in the previous multiprocessor systems. Both hybrid cache and

write-in broadcast cache systems are modeled as extensions of those queueing models

developed in Section 4.5. Queuing analysis is an important tool for multiprocessor

design because it can provide a valid estimate of the contention between PE requests for

memory modules and the bus.

5.4.1. Shared Memory and Bus Queueing Models

The shared memory model considered here consists of simple memory modules of the

type described in Section 4.5. Recall that each module can deliver a physical word in

T a cycles and that the module can be reaccessed after at least T c cycles. This type of

memory module does not offer as high performance as, for instance, a memory bank,

which is itself interleaved. Higher performance models may include a two-level local

memory for each processing element. These local memories may be transparent to the

architecture, i.e., are paged out to a very large shared memory. Another option is to

page the second level local memories directly to disk, dedicating one local memory to

hold shared data.

For most applications, a shared memory multiprocessor without local memories is of

little interest because memory traffic is excessive. In a uniprocessor model (Section

4.5.3), a single processor makes requests (i.e., customers) of an interleaved memory

(i.e., server). This memory can be modeled as a single server even though it is

interleaved, because of two approximations. First, arrival rate of individual (word)

requests are scaled by the inverse of the interleaving factor. Second, the service time to

transfer a block (on a miss or copyback) is calculated assuming a burst mode transfer.

The effect of waiting for a local memory miss, when no further customers can arrive, is

approximated by decreasing the service time by Tdead.

A key point in the uniprocessor main memory model is that the processor must wait for

a read miss to be serviced, i.e., the processor stalls. In a multiprocessor, however,

although a given PE stalls for a read miss, other PEs may not be stalled. One method of

180

modeling this is with a multiple server. A simpler method is to use a single server

model, as in the uniprocessor case, with a scaled Tdead heuristic. Again, misses are

approximated as occurring uniformly across the memory modules. For a block size of

L buswidths and interleaving factor m, the maximum number of concurrently serviced

miss requests is m/L. A single server can be used by scaling the miss request (block)

arrival rate by the inverse of m/L. Abstractly, the model views the system from a single

set of L modules that together service line requests.

In the previous sections, various local memories compatible with PWAM are

introduced. Certain types of local memories are discussed which have no consistency

problems. These include a choice point buffer, instruction buffer, and instruction cache.

In addition, local memories which guaranteed consistency via special protocols were

analyzed: a traditional write-through cache, write-in and write-through broadcast

caches, and hybrid caches In the next sections two main memory models are

presented: a system, ith loca; hybrid caches and a system with local write-in broadcast

caches. Bott: _pes oI_cache._ ase write-allocation policies.

5.4.1.1. Hybrid Cache System

The details of the hybrid cache simulations, presented in Section 5.3, are first reviewed.

Communication references tGoal Stack and Message Buffer references) are assumed to

be non-cacheable and are thus accounted for in a higher miss ratio. Other global write

references are written-through. (Un)binding writes and global Parcall frame writes are

broadcast. Writes to shared lines cause remote copies to be updated.

A review is now gi.,__ of a pure write-through I/D cache, open M/G/1 mo_el [Flynn

87], from which the t_.vbrid model is derived. On a miss, a write-through cache fetches

a line (assuming write-allocate), but does not copyback the replaced line, because it

cannot be dirty. The arrival rates of misses and write-throughs are modeled as

independent Poisson processes, with independent service times. The effect of

interleaved memory is incorporated into the write-through arrival rate, _'1, the miss

arrival rate, k 2, and the miss service time, T 2. For calculation of _-1 and X2, it is

assumed that the write-throughs and misses, respectively are uniformly distributed

across the memory modules. For calculation of T 2, it is assumed that the line size, L, is

less than or equal to the number of memory, modules, m. The model here assumes

multiple processing elements (l:'Es), hence the factor of n, the number of PEs, in the

arrival rates.

181

T I = T c

T 2 = Tline = max(T a + (L-1)Tbus,Tc)

where

Recall that Xp is the PE request rate and MR is the PE miss ratio. WT is the write-

through ratio. Processor stalling is not modeled above; however, stalling is

incorporated into the hybrid modei below with Tdead. Several other points shouid first

be noted. This model views the system from a group of L modules, assuming the

interconnection network does not degrade the system bandwidth (a bus is modeled

independently, later in this section). The arrival rate of line misses are scaled, assuming

multiple misses can be serviced concurrently and that misses are uniformly distributed

across the modules. As a result, the detrimental effect (that of increasing memory

traffic) caused by increasing n can be removed by increasing m.

In comparison to a pure write-through cache, a hybrid cache contains both copyback

lines and write-through lines. Copyback lines may be dirty, in which case they must be

copied back during replacement. Write-through lines are never dirty because writes to

them are written through. The hybrid cache queueing model presented here assumes

that all types of references are cached, in order to simplify the equations. The

measurements presented in this section, however, were generated assuming that

communication references are not cached. Instructions are captured in a separate I-

cache, assumed to have the same line size as the data cache. The previous M/G/1 write-

through cache model is extended for the hybrid by splitting k 2 into two streams: k2a and

X2b. The X2a stream approximates miss requests that stall the issuing processor until the

requests have been serviced. The X2b stream approximates miss requests that do not

stall the issuing processor.

X2a = n*kstall*L/m

X2b = n*tnostall*Idm

T2a = max(Ta+(L- 1)Tbus,Tc) - _Tdead

T2b = maxfra+(L- 1)Tbus,Tc)

182

where

;Lnostal1 = MRw*_ w + MR*kp*DR.

In the above equations, MR is the miss ratio of a PE, split into MR r, the read miss ratio

and MR w, the write miss ratio. The input request stream, ;Lp, is split into ;Lr, the read

miss requests, and ;t w, the write miss requests. Note that DR, the dirty line ratio, is

lower than in the copyback cache. Also, WT, the write-through ratio, is lower than in

the pure write-through cache. Both DR and WT are measured with the hybrid cache

simulator. Miss ratio, uneffected by write strategy, is identical for both the hybrid and

copyback caches.

The Tdead heuristic, used to model processor stalling as in Section 4.5.3, includes a

scale factor, (z, in the multiprocessor model. 0_ reflects the fact that not all PEs are

stalled during a given read miss request, ct = 1 represents all PEs stalling and (z = 1/n

represents only the given PE stalling. In general oc falls between these two values:

ct = (1 + E(# additional PEs stalled at any time))/n.

The expected number of additional PEs stalled at any time is calculated with a binomial

distribution in Pr(stall), the probability that a PE is stalled. Therefore

o_= (1 + (n-1)Pr(stall))/n.

Pr(stall), estimated assuming no miss penalty, ranges from about 0.05 to 0.10 for the

cache sizes considered in the next sections, c_ ranges from about 0.5 to 0.2 for two to

eight PEs. In other words, cz reduces the effect of Tdead for large numbers of PEs. In

fact, for large numbers of PEs, the results presented here are approximately the same as

those calculated assuming no stalls, i.e., cz = 0.

An asymptotic M/G/1 model is derived for three arrival streams in a manner similar to

that of Section 4.5.3 (Equations (4.5) - (4.12)). Recall that the shared memory

bandwidth efficiency, _mem, is defined as

_rn:m = Pa/P,
/

where p is the open queue occupancy and Pa is the asymptotic occupancy. Recall that

processor performance degradation is defined (Equation (4.13)) as

183

D = (Pactual " Pno-miss)/Pactual ' O_<D<I

where Pno-miss is the PE performance (in cycles/instr) assuming no local memory

misses and Pactual is the PE performance accounting for local memory read misses

which stall the processor.

A single bus is chosen for the multiprocessor model considered in this dissertation

because it is required by the coherent cache protocols studied for implementing locking.

The bus model is simple and can be extended by adjusting the bus cycle time, Tbu s. For

instance, a faster bus can be modeled by decreasing Tbu s. Of course, a single bus

interconnect cannot be used in a parallel system of arbitrary size; however, it is a

reasonable organization for a tightly-coupled PWAM shared memory multiprocessor

using a limited number of high-speed PEs, as is modeled here.

In contrast to shared memory queueing model, the bus arrival rate cannot be scaled by

the number of modules, so that the detrimental effect (that of increasing memory traffic)

caused by increasing numbers of PEs cannot be alleviated. In other words, a single bus

is burdened by the total system traffic. If the bus is not extremely fast (Tbusfrc-1), it

becomes saturated by a few PEs. In the measurements presented in the next section,

Tbus/Tc = 0.2 is initially chosen. Later measurements of bus efficiency are presented

relaxing this assumption. The standard asymptotic model is derived as in Section 4.5.2,

with

)"bus= m()"l+_2a+)"2b)"

Note that since the simulator assumes that broadcasts and write-throughs occur

simultaneously, coherency traffic is hidden in Xwt (a component of X1)-

5.4.1.2. Broadcast Cache System

A shared memory queueing model for a write-in broadcast cache system is described

here in terms of modifications to the hybrid cache model of the previous section. The

two queueing models are similar with the following exceptions. Recall from Section

5.2.1 that write-in broadcast caches do not generate write-through traffic, but retain

consistency rather by issuing line invalidations. Invalidation traffic, _'inv, is not

included in the shared memory queueing model because it is directed from one PE to

another, not to shared memory. Unlike the hybrid cache, the write-in broadcast cache

generates an additional stream of force-back traffic due to the invalidation of dirty lines.

Note that a force-back does not stall the associated processor. The M/G/1 shared

184

memory queueing model for the write-in broadcast system is the hybrid model with the

X1 stream (for write-throughs) removed. In addition, the definition of _'nostall is

appended with force-back traffic,

7_.nostalI = MRw*),. w + MR*_.p*(DR+FB).

Definitions of all parameters in this model are the broadcast cache equivalents of the

corresponding parameters in the hybrid model. FB, the forceback ratio, is the ratio of

forcebacks to shared memory requests. Note that forcebacks are essentially premature

copybacks. The dirty line ratio, DR, of the write-in broadcast caches are significantly

greater than those of the hybrid cache because the broadcast caches do not write-

through and therefore collect a large percentage of dirty lines. The miss ratios of the

broadcast and hybrid caches are identical.

The bus queueing model for the write-in broadcast cache system is the standard

asymptotic model of Section 4.5.2 with

'bus= m('l+_2a+_2b)'

where L2a and _2b are as previously defined and

7L1 = n*_.inv/m.

5.4.2. Measurements

Performance meaqurements of the shared memory and bus queueing models are now

presented. Assumed throughout is a local instruction cache of one fourth the size of the

data cache, with equal line size. Also assumed are L = 4 words, T a = 3 cycles, and

T c = 5 cycles. Initially, a two word bus is assumed with Tbu s = 1 cycle.

Figures 5-7 and 5-8 show the statistics for 16-way and 32-way interleaved shared

memories, respectively. The bus bandwidth efficiency, shared memory bandwidth

efficiency, and percent performance degradation are given, as functions of cache size.

Recall that the shared memory efficiency and performance degradation statistics are

calculated independently of the bus efficiency, assuming a perfect interconnection

network. Also recall that these efficiency statistics are calculated assuming a peak

request rate, whereas the performance degradation is calculated assuming a typical

request rate.

185

,.O

|

o
¢..
(D

o_
o

°m

r-
"o
om

"o
t-

..o

E
¢,

E
!

¢.-
(1)

°m

t-
"ID
.m

¢.-

1.0

0.9

0.8

0.7
i

0.6

0.5-

0.4

0.3

1.00 -

0.95 -

0.90 -'

0.85

0.80

0.75

0.70

0.65

0.60

Bus Efficiency

I |

4PE

8 PE

_.....,,..i-.

 024wor=
data cache size in words

Shared Memory Efficiency

D

A_
v

J

Tc = 5 cycles

Ta = 3 cycles

Tbus = 1 cycle
L = 2 buswidths

buswidth = 2 words

! !

256 512
!

1024 words

£3
I

t-

O

.e.=,

"o

"o

14

12 _ ,

10

8

6

4
256 512 1024 won:Is

Figure 5-'/: Hybrid Cache System With 16-Way Interleaving

186

°_
o

°_

==

¢--

"o

¢-

..Q

I

o

¢,-
-o
°_

"o
t_

E3
!

o
°_

"1:3

"0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

1.00

0.95

O.90

0.85

0.80

0.75

0.70

0.65

0.60

12

10

8

6

Bus Efficiency

°
-_- 1PE
•_- 2PE
4- 4PE
•.o- 8PE

 o24
data cache size in words

Shared Memory Efficiency
---'3

A

m

Tc = 5 cycles
Ta = 3 cycles

Tbus = 1 cycle
L = 2 buswidths

buswidth = 2 words

! I I

256 512 1024 words

Performance Degradation

Figure 5-8:

' ' '0256 512 1 24 words

Hybrid Cache System With 32-Way Interleaving

• 187

The primary hybrid cache result is that even with very few processors, the bus saturates.

As the number of PEs increases, bus efficiency decreases at approximately the same

rate, i.e., doubling the number of PEs halves the bus efficiency. A secondary result is

that shared memory efficiency, assuming sufficient bus bandwidth, is reasonable,

falling to 67% for 8 PEs using 256 word caches. Percent performance degradation is

less than 7% for 1024 word caches and interleaving factors of 16 or greater. Increasing

16-way to 32-way interleaving significantly improves memory efficiency. For 8 PEs

with 1024 word caches, {rnern increases from 0.77 to 0.88, a 14% improvement. As

interleaving increases, performance degradation decreases. As can be seen in Figures

5-7 and 5-8, and surmised from the queueing equations, the effect of doubling

interleaving can be approximated by simply relabeling the {mere and _bus curves in

Figure 5-7 with twice the number of PEs. Halving the bus cycle time, Tbu s, has the

same effect on the bus efficiency, _ous- For example, for 8 PEs with 102_. word caches.

halving Tbu s from 1.0 to 0.5, increases {bus from 0.45 to 0.65, a 44% improvement.

The previous results assume a sustained peak burst reference rate. If an arrival rate

compatible with the actual PE performance is used, the metrics improve somewhat. For

instance, assuming _p = 0.46 words/cycle, 8 PEs with 1024 word caches and 16-way

interleaving gives _bus = 0.52 and _mem = 0.82. These constitute improvements (over

the statistics generated using a peak of _.p = 0.6 words/cycle) of 15% and 6%

respectively. For 32-way interleaving, the reduced input rate increases {mere to 0.91, an

improvement of only about 3% over a peak rate system. These perturbations indicate

that the model is stable around the sustained peak request rate.

Figures 5-9 and 5-10 show shared memory bandwidth efficiency and percent

performance degradation as a function of the number of PEs for families of curves

corresponding to interleaving factors. Note that these curves do not represent realistic

models for all numbers of PEs shown. For example, a PWAM/WAM uniprocessor

probably cannot sustain 16 simultaneous memory requests (line = two buswidths) and

therefore 32-way interleaving is unrealistic. For 8 PEs, 32-way interleaving

corresponds to about two outstanding memory requests per PE, a reasonable

assumption. These limitations do not suggest that a tightly-coupled multiprocessor need

not implement a highly interleaved memory. The limitations are only in the

interpretation of the queueing model results m the model cannot accurately analyze an

interleaving factor much greater than the number of PEs. One method of utilizing a

larger number of memory modules is to increase the cache block size. The success of

such a strategy is contingent on a sufficiently fast bus.

188 •

E
E

u,,P

i

tO
¢-.
¢b

°_
¢o

°_:;1::::

"o

-o

J_

1.0

0.9

0.8

0.7

0.6

0.5

0.4_

0.3

1 4way8-way
16-way
32-way

i | i i

1 2 4 8
number of PEs

Figure 5-9: Memory Efficiency: 1024 Word Hybrid Cache System

10

a
' 8

t-

O
°_

7"o

6

5

4

,t

! ! I !

4 81 2
number of PEs

]_ 4-way

8-way
16-way
32-way

Figure 5-10: Percent Performance Degradation: 1024 Word Hybrid Cache System

189

For the particular selection of parameters used in this example, increasing the bus

capacity is essential. Figures 5-11 and 5-12 show the bus efficiency as a function of

Tbus/Tc , the ratio of bus cycle time to memory cycle time. {bus is given for both

families of cache sizes (assuming 8 PEs) and numbers of PEs (assuming 1024 word data

cache configurations). Assumed throughout is T c = 5 cycles. Figure 5-11 indicates

tradeoffs between cache size and bus capacity to retain constant bus efficiency. For

example, the slowest bus (Tbu s = 1 cycle), configured with 1024-word data cache PEs,

has about the same bus efficiency as a bus 50% faster (Tbus = 0.75 cycles), configured

with 512-word data cache PEs. Figure 5-12 indicates that in systems with larger

numbers of PEs, bus efficiency degrades more rapidly with decreasing bus capacity,

than in systems with smaller numbers of PEs.

The slowest bus presented is reoresentative of current, conservative technology

assumptions. The current generation Sequent achieves a peak bus bandwidth of 32

Mbytes/sec, with Tbus/Tc ; 0.1. The buses modeled here achieve a peak bus bandwidth

of 40 Mbytes/sec for a similar 100 nsec cycle single word bus (the difference is partially

due to the assumption here of a separate address bus). For a two word wide bus, 80

Mbytes/sec is achieved. More expensive systems can likely achieve bus capacities in

the range of Tbus/Tc = 0.10 to 0.05. For instance, the Pyramid achieves a peak bus

bandwidth of 100 Mbytes/sec, and the Cydra-5 achieves 200 Mbytes/sec [Barney 87].

Another method of improving system performance is the use of more sophisticated local

memories. Broadcast caches are shown in Section 5.3 to have superior traffic

characteristics to hybrid caches. Figure 5-13 shows the performance metrics for a

write-in broadcast cache system, configured in an identical manner to the hybrid cache

system previously described. Comparison with Figures 5-9 and 5-10 indicates that the

broadcast cache does not significantly improve shared memory bandwidth efficiency or

processor degradation (recall these metrics are calculated assuming a perfect bus). Note

however that bus efficiency is vastly improved. The broadcast cache reduces the bus

traffic by removing the write-through traffic of the hybrid cache. Interestingly, the

write-through traffic loads the bus to a significantly greater degree than it loads the

shared memory.

190

=1
..0

1

t.-
(1)

o_

"o
°_

"o
¢--

1o0--

0.9-

0.8

0.7

0.6

0.5

0.4

0.3

•0.00 0.05 O. 10 O. 15

-0- 1024w cache

•4- 512w cache

-m- 256w cache

0.20 Tbus/Tc

Figure 5-11: Bus Efficiency: Hybrid Cache System (8 PEs/2 word bus)

en

!

>..

e-
l3

,m

.(.2_

iI)
d:
"O

¢..

d:}

1.0

0.9

08

0.7 !-___ 21PEpE
0.6 _ 4 PE

8 PE

0.5

0.4

0.3 , , , ,

0.00 0.05 0.10 0.15 0.20 Tbus/Tc

Figure 5-12: Bus Efficiency: 1024 Word Hybrid Cache System (2 word bus)

191

.0

I

o
t-

°_

._o

"13

'ID

.o

E

E

!

U

°_

°_

"I3
°_

"13
¢-

co

C3
!

t-

O
°m

cO
"13

"13

1.00 -

0.95

0.90

0.85

0.80

Bus Efficiency

v

I I I I

0.00

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.05 0.10 0.15 0.20

Shared Memory Efficiency

1°19

817

5

1 2 4

number of PEs

Performance Degradation

8

number of PEs
8

-a- 1PE
2PE

-=- 4PE
•.e- 8PE

Tbus/Tc

-0- 4-way]

8-way
16-way

•._ 32-way

.._ 4-way

8-way
16-way
32-way

Figure 5-13: Broadcast Cache System Performance (2 word bus)

192

5.5. Summary

In this chapter, two-level memory hierarchies are defined and analyzed for a parallel

Prolog architecture. Specifically, the memory performance of the Restricted-AND

Parallel Prolog ff'WAM) architecture, executing on a tightly-coupled, shared memory

multiprocessor, is analyzed. Shared memory multiprocessor consistency problems for

PWAM are solved in a variety of ways -- measurements of the memory performance of

broadcast, hybrid, and write-through coherent cache schemes are presented. The hybrid

cache, a new combination of write-through and write-broadcast cache designs, takes

advantage of RAP-Prolog attributes to guarantee consistency with moderately low

overheads and inexpensive hardware. The PWAM memory performance measurements

presented here and in Chapter 3 support the PWAM design tenets -- the PWAM

displays low communication overheads and efficient sequential execution.

Que:..eing models for the multiprocessor's shared memory and shared bus are developed

from the M/G/1 models of the previous chapter. Measurerr, cnts are presented for two

split I+D cache configurations: one with a hybrid data cache and one with a broadcast

data cache. The primary result of the queueing analysis is that for a multiprocessor with

a small number (eight) of high-performance PEs, buses of insufficient capacity become

a performance bottleneck. Consider systems with a two word bus connecting a shared

memory and eight high-performance PEs, each with a 1024 word data cache and 256

word instruction cache. Assuming Thus/To = 0.2 (current, conservative technology) a

hybrid data cache system achieves 0.45 bus bandwidth efficiency, whereas a write-in

brc.>adcast data cache system achieves 0.._4 bus efficiency. ,,ssuming higher capacity

buses, for instance _ :.usFfc = 0.05 (no> emerging techn-. _.,gy), the hybrid system

achieves 0.80 bus efficiency whereas the broadcast system achieves 0.96 bus eff;ciency.

Measurements indicate that both hybrid cache and broadcast cache systems display

approximately the same shared memory bandwidth efficiency and processor

performance degradation, given buses of sufficient capacity. For the system

configurations considered immediately above with 32-way interleaving, both the hybrid

cache and broadcast cache systems exhibit about 6% performance degradation (6.5%

for 16-way interleaving). These results show that an interleaved shared memory can

successfully reduce the miss penalty seen by an individual PE. Given an advanced bus

with bandwidth efficient close to one, these performance degradations translate into

speed-ups of about 750% for an eight PE system.

193

, Chapter 6

Conclusions and Future Research

6.1. Conclusions

This dissertation synthesizes logic programming architecture design with the lessons

learned from procedural programming architecture design and memory organization.

The field of logic programming machine design is new. At the time of the complezion

of this dissertation, as few as two Prolog machines had the ability to execute the

benchmarks measured here. It is therefore not surprising that little has been published

in the area of logic programming machine performance. This dissertation helps fill this

large gap, but much additional research is needed because the supply of questions is

seemingly endless. The vast store of knowledge and folklore available about procedural

language architectures and machines is absent for logic programming languages.

Therefore, results that are similar for the two paradigms are just as interesting as results

unique to logic programming.

One of the contributions of this dissertation is the extension of the principles of

canonical machine architectures [Flynn 84], first developed for FORTRAN, to Prolog.

The Prolog canonical interpretive forms (CIFs) efficiently model extensive use of

dynamic structure creation and pointers, frequent procedure calls, and nondeterminate

execution behavior. Initially a so-called traditional CIF is developed, based on a very

close correspondence with Prolog. The traditional Prolog CIF assumes a host with an

unlimited size stack buffer, in the tradition of procedural CIFs. Such an assumption is

ill-directed for Prolog, however, where only about 75% of data references are to the

stack.

A second CIF is then developed, based On a less expensive host, assuming only a

register set. A two-level name space model is used, consisting of a register set and

environment. The architecture places as many variables in the registers as possible,

using environments only when necessary. It is shown that the traditional CIF performs

far better than the register-based CIF, reducing instruction bandwidth by 15% and data

194 o

bandwidth by 75% on average. The register-based CIF, however, has the potential to

attain higher performance than the traditional CIF on both minimal hosts and cache-

based hosts with register sets. The Warren Abstract Machine (WAM) model [Warren

83a] is shown to be an actualization of a register-based CIF. Consequently, the CIF

design paradigm can be viewed as an informal method of deriving the WAM instruction

set. The WAM model is used throughout the dissertation as a typical Prolog

architecture, to study the memory performance of Prolog benchmarks. The selection of

the WAM is beneficial because it facilities the study of a closely related Restricted

AND-Parallel Prolog architecture.

The Prolog CIFs are introduced as collections of architecture attributes. Some of the

attributes are more completely defined than others. In contrast to procedural CIFs, the

Prolog CIF attributes could only be measured empirically. Results indicate that the

most promising attributes are tight instruction encoding and ideal indexing. Realizable

attributes can be constructed from these, for use in high-performance instruction sets.

For instance, byte encoding of instructions and indexing on first argument are

realizations of CIF attributes.

The CIFs presented are based on a single clause scope for the definition of identifiers, a

result from the direct correspondence with Prolog. This definition allows simple

translation from source to CIF, but does not offer optimal memory performance. An

alternative approach is to relax the correspondence, increasing the size of the scope at

the architecture level, e.g., to a procedure or set of procedures, at the cost of increased

compilation complexity. For the traditional CIF, increasing the scope size would allow

tighter encoding of identifiers, reducing the memory bandwidth reqairement. For the

register-based CIF, a larger scope w_.>uld allow more efficient register allocation and

would facilitate the translation of recursion into iteration. These are important topics

for further research in logic programming language implementations.

A conventional empirical methodology is used in this dissertation to measure the

memory characteristics of the sequential and parallel logic programming architectures.

This methodology consists of a compiler, an emulator, trace-driven memory simulators,

and a queueing model analyzer. The.contributions of this portion of the dissertation lay

not in the methodology, but rather in the results collected. At the highest level, shallow

backtracking is the primary data-memor) performance bottleneck of the WAM m 46%

of dynamic data memory traffic is devoted to procedure control and failure, as

compared to 39% for both general and specialized unification. This result was

unexpected, because the WAM model is optimized for determinate programs, which do

195

little deep backtracking. Shallow backtracking, however, is the result of an "if-then-

else" action within a procedure. Because the compiler is not sophisticated enough to

frequently avoid this behavior, the full penalty (in memory traffic) for backtracking is

paid. This result indicates that a simple (single) choice point buffer could effectively

reduce the data bandwidth requirement. Simulation measurements presev, ted verify this

m for data references, a 12 word buffer offers a miss ratio of 0.55 and a traffic ratio of

0.62.

These results are promising, but performance is still low. Other local memories adept at

reducing the memory bandwidth requirement are therefore studied. Envisioning a

single chip microprocessor, the local memories considered are small (from 64 to 1024

words). A stack buffer of only 64 words offers a miss ratio of 0.28 and a traffic ratio of

0.30. The stack buffer, more complex than the choice point buffer, captures both choice

point and environment references. A copyback cache, capturing all types of references,

does better still m a 256 word cache (with four word lines) offers a miss ratio of 0.05

and a traffic ratio of 0.23. Smart caches, which avoid transferring lines no longer in a

valid storage area, reduce the cache traffic ratio by up to 30%. The local data memories

analyzed fall into three price-performance ranges. The choice point buffer occupies the

low end, the stack buffer occupies the mid-range, and the cache occupies the high end.

Many current Prolog machines [Dobry 85, Nishikawa 83, Nakazaki 85, Nakashima

87] incorporate large caches to ensure high performance. For these machines, built with

discrete logic, cache size was not as limiting a factor as in a VLSI implementation.

Efficient cost/performance VLSI designs (e.g., for the processing element of a

multiprocessor) integrate both the CPU and local memory on a single chip. The data

provided here should aid these designs, where size is a critical factor.

A comparison of logic programming to procedural programming paradigms is of

interest because most current logic programming languages are implemented on

conventional hosts. In this dissertation, various comparisons are drawn between Prolog,

FORTRAN, and Pascal. A portion of these results are summarized in Table 6-1. The

data cache traffic ratios are given for a four word line cache with write-allocation. The

results indicate that Pascal, with a smaller working set than Prolog, exhibits higher

locality, resulting in about half the data traffic for equal sized caches. This holds for

both copyback and write-through data caches. Interestingly, both languages make about

25% of their data references to global data objects. Estimating multiprocessor

broadcast traffic as writes to global (potentially shared) data, Pascal generates half the

broadcast traffic of Prolog because it makes about half the number of writes.

196

"od, data ref/instr (words)

•oi, instr ref/instr (words)

mean instr size (bytes)

mean run length (instr)
copyback data cache TR
write-thru data cache TR

% write/data traffic

% broadcastJdata traffic

Table 6-1:

Proiog FORTRAN
WAM IBM/370 Pascal

2.32 0.524

0.679 0.837

2.6 3.35 ,

6.5 16.9

0.10

0.53

47% 18%
12%

Prolog, FORTRAN, and Pascal

0.05
0.24

25%

6%

A major conclusion of the dissertation is that shallow backtracking contributes more to

Prolog's data bandwidth requirement than any other factor. Advanced compilation

techniques [Turk 86, Asakawa _6, Van Roy 87] are not discussed here, but promise to

allay the problem. The effectiveness of future compiler optimizat;ons in reducing the

choice point traffic is unknown, however. Very effective compilers will alter the

memory referencing characteristics presented here, placing more emphasis on heap

referencing. With this trend in mind, data caches seem most appropriate for future

high-performance implementations.

In the area of local instruction memory design and analysis, the results obtained are

similar to those of traditional architectures. Byte encoding generates 63% of the

instruction traffic of word encoding. Bit encodings save about 10% of the traffic

generated by byte encoding. Look-ahead instruction buffer rr_easurements indu ate that

an instruction miss ratio of 0.18 could be obtained by prefetching alone. The

disadvantage of this model is the excessive traffic wasted for each taken branch.

Instruction caches have the ability to reduce traffic and are therefore examined. The

Prolog instruction stream exhibits less temporal locality than instruction streams of

procedural languages, because loops, implemented recursively, are more spread out.

This loss of locality is verified by instruction cache and combined I/D cache

measurements. The I-caches perform only moderately well and combined UD caches

generate more traffic than sprit I+D caches. The split caches are advantageous because

spread out loops act like sequential code in small combined caches, forcing data lines

out with LRU replacement.

Prolog performance can be increased further still with parallel architectures and

197

multiprocessor hosts. A contribution of this dissertation in this area is the memory

performance analysis of the Restricted-AND Parallel Prolog architecture (PWAM)

[Hermenegildo 87a] executing on a tightly-coupled shared memory multiprocessor

model. Shared memory multiprocessor consistency problems for the PWAM

architecture are solved in a variety of ways. Measurements of broadcast, hybrid, and

write-through coherent cache schemes are presented. The hybrid cache, a new

combination of write-through and write-broadcast cache designs, takes advantage of

RAP-Prolog attributes to guarantee consistency with moderately low overheads and

inexpensive hardware. The cache schemes analyzed fall into three price-performance

ranges. Traditional write-through caches occupy the low end, the hybrid caches occupy

the mid-range, and the write-in broadcast caches occupy the high end. The PWAM

memory performance measurements presented in this dissertation help verify the design

tenets of the PWAM architecture -- low communication overheads and effic;,ent

sequential execution.

The analysis of the local memories cannot be accomplished solely within the simple

framework of miss and traffic ratios. This is because memory requests contend for the

service of a single main memory. To lessen this damaging effect, interleaved main

memories consisting of a set of single-port modules are analyzed. Analytical queueing

models based on the M/G/1 model are used to estimate the performance of the memory

hierarchies. Of course, the contention problem is worse for the shared memory

multiprocessor model than for a uniprocessor. Measurements of these effects are

presented for two families of organizations utilizing hybrid caches and write-in

broadcast caches. The queueing models measure bus and shared memory bandwidth

efficiency (i.e., the fraction of the bandwidth required by the system, supplied by the

bus or shared memory), and processor performance degradation. A single shared bus is

modeled because it is required by the coherent cache protocols studied.

The primary result of the queueing analysis is that for a multiprocessor with a small

number (eight) of high-performance processing elements (PEs), buses of insufficient

capacity become a performance bottleneck. Consider systems with a two word bus

connecting a shared memory and eight PEs, each with a 1024 word data cache and 256

word instruction cache. Assuming Thus/To = 0.2 (the ratio of the bus cycle time to the

main memory module cycle time) a hybrid data cache system achieves 0.45 bus

bandwidth efficiency, whereas a write-in broadcast data cache system achieves 0.84 bus

efficiency. Assuming higher capacity buses, for instance Thus/To = 0.05, the hybrid

system achieves 0.80 bus efficiency whereas the broadcast system achieves 0.96 bus

198

efficiency. In addition to tradeoffs between cache protocol performance and cost, cache

size and bus capacity can also be traded-off.

If bus capacity is sufficient to achieve the bandwidth required by the PEs,

measurements indicate that both hybrid cache and broadcast cache systems deliver

about the same shared memory bandwidth efficiency and processor degradation. For

the systems considered in the previous paragraph with a 32-way interleaved shared

memory, both the hybrid cache and broadcast systems exhibit about 6% processor

performance degradation. 16-way interleaving results in about 6.5% degradation.

Thus, an interleaved shared memory can successfully reduce the miss penalty seen by

an individual PE.

These results indicate that given sufficient parallelism in an application, a speed-up of

about 750% can be achieved on a tigndy-coupiea PWAM multiprocessor with eight

high-performance (e.g., 100 KLIPS on large applications) PEs. The design space

investigated in this d_s,,ertation may be considered limited -- conventional shared

memory designs with single bus interconnect, one-level interleaved memory, and few

processing elements with small local memories. The view taken here, however, is that

all types of uniprocessors will soon evolve into such systems because these limited

multiprocessors offer the best cost/performance tradeoff. This dissertatior_ analyzes the

memory design parameters for Prolog architectures. A low-cost PWAM multiprocessor

achieving over one million application LIPS appears to be a realistic goal, well within

current technology constraints.

6.2. Future Research

Recent comparisons of the PLM with SPUR [Borriello 87] and the MC68020 [Mulder

87a] indicate that reduced and multi-purpose instruction-set architectures have certain

advantages over the high-level WAM. These types of instruction sets allow more

sophisticated compiler optimizations. A detailed study, similar to this dissertation, of

the memory characteristics of low-level Prolog instruction sets is necessary to evaluate

these architectures. The effects of compiler optimizations should also be evaluated.

More precise cost and area measurements are needed for the local memories described

here (e.g., Mulder's stud)' of Pascal [Mulder 87b]). This would permit a more accurate

accessmen[of the price-performance niches of the local memories. Larger benchmarks

would allow larger local memories to be measured. In addition, a more thorough study

of alternative designs for the zeroth memory level, i.e., the register set, should be

199

conducted, For instance, the Pegasus chip [Seo 87] implements a single choice point

buffer as a set of shadow registers m the cost (in area)/performance tradeoffs of this

and similar designs (including general-purpose microprocessors, such as the AM29000

[Wolfe 87]) are of great interest. The traditional Prolog CIF architecture presented in

Chapter 2, and its direct correspondence architectures, such as Prolog-10, may be better

suited than the WAM for a host with a large stack buffer or multiple register set.

This dissertation analyzes the memory performance of a Restricted AND-Parallel

Prolog architecture. The study of PWAM executing on a shared memory

multiprocessor requires more detailed simulations of coherent caches. The shared

memory and bus queueing models should be coupled for more accurate estimations of

performance degradation and speed-up. Most importantly, more realistic benchmarks

are required, including those with CGE conditions and nondeterminism. The efficient

exploitation of other types of parallelism in logic programs is also of great importance.

Extensive performance studies of other parallel Prolog architectures (e.g., Shen's study

of ANLWAM [Shen 86]) are needed to evaluate their potential benefits.

200

201

Appendix A

Glossary of Notation

13

X

Pa

ANLWAM

Ba

B o

B

C 2

C

CIF

CP

CR

memory references per instruction.

customer arrival rate in a queueing model, measured in units of

requests per machine cycle.

sustained burst memory request arrival rate from a processor. For

Prolog _his arnval rate corresponds to the intense memory activity

during a chain of successive failures.

service rate in a queueing model, measured in units of customers

(requests) per machine cycle.

bandwidth efficiency, i.e., the ratio of the achieved bandwidth to the
offered (desired) bandwidth.

occupancy of the open queueing model, measured in units of

Erlangs (an abstract unit). Occupancy is calculated as the
(effective) arrival rate over the (effective) service rate. Represents
the load on the server.

asymptotic occupancy, i.e., occupancy of the closed queueing
model.

Argonne National Laboratory OR-Parallel Prolog architecture.

achieved bandwidth in an asymptotic (closed) queueing model,

measured in units of words per cycle. Also referred to as B(m,n) in
the literature.

offered bandwidth in an open queueing model, measured in units of

words per cycle.

current (top) choice point pointer in the WAM.

coefficient of variation for queueing models.

current choice point E-stack pointer in the split stack architecture.

Canonical Interpretive Form.

continuation pointer in the WAM -- points to next instruction to be
executed should the current goal succeed. This register acts like a

hardware retum pointer from the current procedure call.

copyback ratio, defined for a copyback cache as the ratio of the
number of words copied back from the cache to main memory, to

the number of write requests issued by the processor.

PR_DING PPlGE BLANK NOT FILMED _

202

D

DCA

DR

E

H

HB

I-IPM

L

LIPS

LRU

MIPS

MR

m

n

P

P

_I..M

/SI

PWAM

Q
Q,

RAP-Prolog

RISC

s

SPUR

r.
T_cess

processor performance degradation, defined as the fraction of ideal
processor performance (assuming a local memory of unlimited size)

lost due to local memory misses in an actual processor (with a finite
local memory).

Direct Correspondence Architecture.

dirty line ratio, defined for write-through and hybrid caches as the

ratio of the number of copied back lines to the number of caches

misses, i.e., the fraction of replaced lines that are dirty.

current environment pointer in the WAM.

top of heap pointer in the WAM.

heap backtrack pointer in the WAM -- points to where the top of
heap was at the time the current choice point was created.

High-speed Prolog Machine (also called Chi).

cache line (block) size.

logical inferences per second.

Least Recently Used.

millions of instruc dons per second.

miss ratio, defined as the fraction of references that cannot be

serviced from local memory.

interleaving factor, i.e., number of memory modules in an

interleaved memory.

number of processing elements in multiprocessor.

processor performance, measured in units of cycles per instruction.

current instruction pointer (program counter) in the WAM.

F'-,,grammed Logic Machine.

Personal Sequential Inference machine.

Restricted AND-Parallel Prolog architecture (also known as
WHAM!).

average number of customers in system, in units of words.

average number of customers enqueued, in units of words.

Restricted AND-Parallel Prolog.

Reduced Instruction Set Computer.

heap structure pointer in the WAM -- points to elements of

structures and lists on the heap.

$5 mbolic Processing Using RISCs.

memory access time, in cycles.

average memory request delay, in cycles.

, 203

T b

Tc

Tdead

T¢

T"w

TR

TRO

WAM

Xi

Yi

bus transfer time, in cycles.

memory cycle time, in cycles.

heuristic used to model processor stalling due to local memory read
miss.

effective memory cycle time, in cycles, calculated as Tc/m.

average time a memory request waits for service, in cycles.

top of trail pointer in the WAM.

Tail Recursion Optimization.

Warren Abstract Machine.

temporary register i in the WAM. Also referred to as Ai in the
literature.

permanent variable i in the WAM, resident in the current
environment.

, 204

2O5

Appendix B

Lcode Instruction Set Summary

Table B-1 lists each Lcode instruction with its sizes for both word and byte encoding

schemes. Each instruction is listed alphabetically by opcode, with an instance of the

assembly code. The word encoding size is given in units of words. The byte encoding

size is given in units of bytes. Refer to Tick [Tick 87a] for the complete Lcode

semantics. Refer to Warren [Warren 83a] for the WAM instruction semantics. Notes

concerning Table B-1 follow.

1. Local branch instructions (i.e., branches within a procedure) are given two
sizes for each encoding scheme. The first size corresponds to a short

offset of one byte. The second size corresponds to a long offset of two
bytes. For example, with a byte encoding, branch requires 3 bytes for

short offsets and 4 bytes for long offsets.

2. Non-local branch targets (call and execute instructions) are encoded

as a two byte offset from a segment register.

3. The index instructions switch constant and

switch structure, have sizes of 1 word or 2 bytes. This does not
include the size of the hash table following the instruction. During

emulation, only one hash entry reference (two reads -- one for the key,
one for the value) is counted in addition to the instruction fetch.

4. In general, the trust me else operand can be a local clause label.
This facilitates code assertion and retraction. Since assertion/retraction of

code is not implemented in the Lcode system, the trust me else
instruction is always given a fail operand.

Table B-2 lists each Lcode instruction with associated dynamic statistics measured by

averaging the statistics from the individual benchmark programs (CHAT, PLM, QC1,

and ILI). Instructions not executed in any of the programs are not included in the table.

The mean instruction frequency, data and instruction references per instruction (in

bytes) and percent weight are shown. Instruction weight is calculated as the product of

instruction frequency and references per instruction. All instructions have a fixed

number of instruction references (except for the indexing instructions for which

instruction references were not accurately measured). Notes concerning Table B-2

follow.

pR_ENNG P_-.-_ BLANK N,.Ti t;LMii._

i

• ,,(/U

206

1. The escape statistics are averaged over those built-ins present in the
benchmarks.

2. The failure statistics are averaged over all failures. No instruction bytes
are referenced because failure is similar to a software trap.

3. The get_constant, put_constant, and unify_constant

instructions are further categorized as atom or integer. All the

statistics presented as additive, so that for instance, getconstant
accounts for 2.046% of all instructions executed, with 1.67% of the total

weight. Note that the benchmarks show a strong bias towards symbolic

rather than arithmetic computation.

4. The Lcode compiler does not have the ability to generate unify.value

instructions. Only the unoptimized form of unify_local_value

instructions are generated. For read mode, these mstruct,ons are

equivalent, and are listed as unify_value.

5. Copy mstrucuons correspond to unify instructions executed in write
mode.

6. In write mode, a unify local value instruction dereferences its

operand and globalizes it onto the heap if necessary. The

copy local_value category corresponds to write mode execution of
unify local_value instructions that do require globalization.

7. The copy_value category corresponds not to unify_value
instructiorJ, executed in write mode, but rather to

unify_local_value instructions that do not require globalization (in
this case, execution of the two forms are identical, except for the extra

dereference). Note that globalization was required only about 1 in 9
times.

Table B-3 summarizes these statistics by instruction type, as defined in Table 2-5. The

instruction types are listed in order of greatest percent weight. These statistics consider

failure, general unification, and escape as separate instruction types. Therefore the

cost of general unification is not counted in the head or structure matching groups.

Note that the indexing weight is highly optimistic, calculated assuming perfect hashing.

207

opcode assembly inst3nce words bvtes

add

add constant

allocate

branch 1

call 2

comp_x

comp_y
cond x

cond_y
cut

cutd

cut_strong
deallocate

decrement

divide

divide constant

escape

execute 2

fail

get_constant

get_list

get_nil

get_structure

get_value_x

get_value_y

get_variable x

get_variableSy

increment

jump

mod

mod constant

multiply

multiply_constant

proceed

TableB-l:

add Xl,X2,X3 1

add constant XI,X2,15 2

allocate 8 I

branch nil,Xl,_1234 I

call 1234 1

comp <, Xl, X2 l

comp <, YI, Y2 1

cond vat, X1 1

cond var, Y1 I

cut I

cutd 1234 1

cut_strong 1
deallocate 1

decrement Xl,X2 1

divide Xl,X2,X3 1

divide constant Xl,X2,15 2

escape 3 1

execute 1234 1

fail 1

get_constant XI,-44 2
get_list Xl]

get_nil Xl 1

get_structure Xl,f/4 2

get_value Xl,X2 1

get_value YI,X2 1

get_variable Xl,X2 1

get_variable YI,X2 1
increment Xl,X2 1

jump 1234 1

mod XI,X2,X3 |

mod constant X1,X2,15 2

multiply XI,X2,X3 I

multiply_constant XI,X2,15 2

proceed 1

Lcodelnst_ctionSetForrnats(notesl-4intext)

3

6

2

3/4

3

3
4

2

3

1
2/3

1

1
2

3

6

2

3

1

6

2
2

6

2
3

2

3
2

2/3

3

6

3
6

1

208

Opcode assembly instance

put_constant put_constant Xl, -44

put_list put_list X1

put_nil put_nil Xl

put_structure put_structure Xl, f/4

put_unsafe_integer_x put_unsafe_integer X1

put_unsafe_integer_y put_unsafe_integer Y1

put_uns a fe_va lue_y

put_value x

put_value--_y

put_variable x

put_variableSy

retry

retryme_else

stop
subtract

subtract constant

switch constant 3

swi t ch--s t ru ctu re 3

swStch term

trust

trust me else

try

try. me else

unlfy constant

unify local_value x

uni fy_local_valueSy

unifynil

unify value x

unlfy value y

uni fy_variable_x

unify variable_y

unify_void

put_unsafe value Y1, X2

put_value Xl, X2

put_value Y1, X2

put_variable X1, X2

put_variable Y1, X2

retry _1234

retr_ me else _1234

stop

subtract XI,X2,X3

subtract constant X!,X2,15

switch constant 8

switch structure 8

switch_term _123,faii,_123
trust 1234

trust me else fail 4

try 8,_1234

try_me_else 8,_1234

unifyconstant -44

unify local value x X1

unify_localSvalueZy Yl

unify_nil

unify_value_x X1

unify_value_y Y1

unzfy variable x X1

unify_variable_y Y1

unify_void 8

Table B-l: Lcode Instruction Set Formats - continued

words bytes
2 6

1 2
1 2

2 6
1 2

1 2

1 3

1 2

1 3
1 2

1 3

1 2/3
1 2/3

1 1

1 3
2 6

1+2 2+8

1+2 .2+8

1 I2 4/7

1 2/3

1 1

1 3/4

1 3/4

2 5

1 2

1 2

1 1

1 2

1 2

1 2

I 2
1 2

209

% data instr %

opcode instr bytes bytes weight
add 0.026 0.00 3 0.01
add constant 0.014 0.00 6 0.01

allocate 3.491 16.00 2 5.27

call 3.347 0.00 3 0.84

comp_x 0.151 1.35 3 0.05

comp_y 0.114 6.04 4 0.12
cond x 1.104 1.10 2 0.23

cond--_y 0.416 7.20 3 0.29
cut 0.859 14.88 1 1.18

cutd 0.247 12.53 2 0.30

cut_strong 0.628 6.84 1 0.43
deallocate 1.670 8.00 1 1.26

decrement 0.047 0.00 2 0.01

divide constant 0.026 0.00 6 0.01

escape T [.119 _ _ ..3.6_- "_ 2.60

execute 3.037 0.00 3 0.76

failure 2 6.009 44.59 0 22.49

get atom 3 1.823 4.40 6 1.49

get--integer 3 0.223 4.52 6 O.18

get_list 5.117 2.64 2 1.88

get_nil 0.500 3.20 2 0.20

get_structure 6.437 5.83 6 6.52

get_value_x 1.953 11.17 2 2.13

get_value_y 0.187 13.21 3 0.25

get variable x 0.560 0.00 2 0.09

get variable_--y 6.051 4.00 3 3.56
increment 0.234 0.00 2 0.04

jump 0.359 0.00 2 0.06

proceed 2.447 0.00 1 0.21

put_atom 0.254 0.00 6 0.13

put_integer O.107 0.00 6 0.05

put_list 0.531 0.00 2 0.09

put_nil 0.049 0.00 2 0.01

Table B-2: Lcode Instruction Reference Characteristics (notes 1-7 in text)

210

type

put_value_x

put_value_y

put_structure

put_unsa fe_integer_x

put_unsafe_integer_y

put_un s a fe_va iue_y

put_variable x

put_variablCy

retry

retry_me_else
switch constant

switch structure

switch term

trust

trust me else

try

try_me_else

unify_atom

unify_integer

unify_nil

unify value_x 4

uni fy_value_y

uni fy_variable x

uni fy_variable y

unify_void

copy atom 5

copy_integer

copy_l oca l_va lue_x 6

copy _ ocal value_y

copy n i 1

copy_value_x 7

copy_value_y

copy_variable_x

copy variable y

copy_void

Table B-2: Lcode Instruction

% data instr %

instr bvtes bytes weight
2.647 0.00 2 0.44

6.878 4.00 3 4.04

0.383 4.00 6 0.32

0.277 0.40 2 0.06

0.096 3.04 2 0.05

1.617 8.61 3 1.57

0.372 4.00 2 0.19

2.475 4.00 3 1.45

0.768 4.00 2 0.39

2.133 4.00 2 1.07

0.867 0.61 10 0.75

0.914 4.72 10 1.12

3.657 0.51 4 1.36

0.267 7.93 2 0.22

2.832 8.00 1 2.15

0.330 44.17 3 1.34

4.414 42.64 3 16.69

0.890 5.12 5 0.71

0.092 4.20 5 0.07

0.051 3.37 1 0.03

0,905 26.86 2 2.11

0.042 6.74 2 0.05

6.257 4.00 2 3.15

2.627 8.00 2 2.20

3.099 0.00 2 0.52

0.396 4.00 5 0.30

0.270 4.00 5 0.20

0.230 6.33 2 0.18

0.103 1189 2 0,11

0.398 _ 00 I 0.17

1.928 5.90 2 1.26

0.912 10.65 2 0.94

1.794 4.00 2 0.90

1.110 8.00 2 0.93

0.302 5.24 2 0.19

Reference Characteristics - continued

211

type

% data instr %

instr bvtes bytes weight

procedure control
failure

head matching
structure matching
clause control

goal matching

unification

escape

indexing
arithmetic

12.59 14.18 1.80 24.31
6.36 38.24 21.32

20.94 6.75 3.44 13.91

19.97 6.01 2.44 12.83

14.11 4.80 2.20 9.35
14.15 2.45 3.25 8.77

3.11 14.36 3.54

1.49 16.66 2.00 3.00
7.55 3.78 2.75 2.89

0.39 0.00 3.80 0.09

Table B-3: Lcode Characteristics by Type

212

213

Appendix C

Local Memory Management Algorithms

In this appendix, the management algorithms for the choice point buffer, copyback

stack buffer, and copyback environment stack (E-stack) buffer are presented. Note that

the algorithms are written for clarity, not optimality. Buffer management must often be

performed within normal instruction semantics. For instance, in Figure C-2,

allocate resets E and TOS, manages the buffer, and then writes the new

environment. This last portion of the instruction semantics is not included in the

algorithm and can be found in Tick [Tick 87a].

action is

reference i(B):
if (valid and BufferSize<i)

access buffer[i];
else

access memory [B +i];
try n:

try me else n:

if(valid)

memory[B..B+m] = buffer[0..m];
else

valid = 1;

if(n > BufferSize)
m = BufferSize;

else

m=n,
cut:

trust:

trust me else:

valid= O;

FigureC-1: Choice Point Buffer Management

PREI_EDING P/_I. BLANK NOT FILMED i ¸ ,

214

action is

reference to a:
if (valid and Z<a and a<A)

access buffer[a];

if (write) dirty[a] = 1;
else

access memory[a];
- deallocate:

CP = CP(E);

E = E(E);

reset();
cut:

B = B(E);

ifnondeterminate B = B(B);
1-133= HB(B);

reset();
trust:

trust me else:

B = B(B);

HB = HB(B);
reset();

allocate n:

E = TOS += n+4;

set(n÷4);

try n:

try, me else n:
B = TOS += n+4;

set(n+4);

Figure C-2: Stack Buffer Management

215

set(n):

if (n>BufferSize)

if valid
valid = 0;

copyback(A-Z +4);
else

if(valid)
InUse = A-Z+4;

LeftOver = BufferSize - InUse;
d = n - LeftOver;

if (d>0)

copyback(d);
Z+=d;

A = TOS;
else

valid = 1;
A = TOS;

Z = A-n;

reset():

if(E>B)
TOS = E;

else

TOS = B;
valid = TOS>__Z;

if(valid)

dirty[Z..Z-TOS+A+4] = 0;
A = TOS;

else

dirty[Z..A+4] = O;

copyback(d):

for (i=Z;i<Z+d;i+=4)

if(dirty[i])
dirty[i] = 0;
memory[i] = buffer[i];

Figure C-3: Stack Buffer Management Support

216

action is

reference to a:
if (valid and Z<a and a<A)

access buffer[a];

if (write) dirty[a] = 1;
else

access memory[a];
deallocate:

CP = CP(E);
E = E(E);

reset();
cut:

B = B(E);

ifnondeterminate B = B(B);
HB = HB(B);

reset();
trust:

trust me else:

= B(B);

HB = HB(B);

reset();
allocate n:

E = TOS += n+4;

set(n+4);

reset():

/f(E>C)
TOS = E;

else

TOS = C;
valid = TOS>_Z;

if (valid)
dirty[Z..Z-TOS+A+4] = 0;
A = TOS;

else

dirty[Z..A+4] = 0;

Figure C-4: E-Stack Buffer Management

217

References

[Alpert 84]

[Archibald 86]

[Asakawa 86]

[Barney 87]

[Bitar 86a]

[Bitar86b]

[Borriello 87]

[Bowen 83]

[Bowen 84]

D. B. Alpert.

Memory Hierarchies for Directly Executed Language
Microprocessors.

PhD thesis, Stanford University, June, 1984.

also available as Technical Report CSL-TR-84-260.

J. Archibald.

High Performance Cache Coherence Protocols For Shared-Bus

Multiprocessors.
Technical Report 86-06-02, University of Washington, Seattle, WA

98195, June, 1986.

Y. Asakawa, H. Komatsu, T. Kurokawa, N. Tamura.

A Very Fast Prolog Compiler on Multiple Architectures.
In Fall Joint Comtvuter Conference. ACM and IEEE Computer

Society, November, 1986.

C. Barney.

This New Design Ouu'uns Vectorizing Minisupers.

Electronics :65, April 30, 1987.

P. Bitar and A. M. Despain.

Multiprocessor Cache Synchronization.

In 13th Annual International Symposium on Computer Architecture,
pages 424-433. IEEE Computer Society, June, 1986.

P. Bitar.

personal communication.

December, 1986

G. Borriello, A. Cherenson, P. B. Danzig, and M. Nelson.

RISCs or CISCs for Prolog: A Case Study.
In Second International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS H).
IEEE Computer Society, October, 1987.

D. L. Bowen, L. M. Byrd and W. F. Clocksin.

A Portable Prolog Compiler.

In Logic Programming Workshop '83, pages 74-83. Universidade
Nova de Lisboa, June, 1983.

D. L. Bowen.

NIP: New Implementation of Pro_log.

Technical Report, Dept. of Artificial Intelligence, University of
Edinburgh, May, 1984.

unpublished.

218

[Butler 86]

[Byrd 80]

[Byrd 85]

[Carlsson 86]

[Censier 78]

[Clark 85]

[Debray 85]

[DeGroot 84]

[Ditzel 82]

[Dobry 84]

R. Butler, E. L. Lusk, R. Olson, and R. A. Overbeek.

ANLWAM: A Parallel Implementation of the Warren Abstract
Machine.

Internal Report, Argonne National Laboratory, Argonne, IL 60439,
1986.

L. Byrd, F. C. N. Pereira, and D. H. D. Warren.

A Guide to Version 3 ofDEC-IO PROLOG.

Technical Report 19, Dept. of Artificial Intelligence, University of

Edinburgh, July, 1980.

L. Byrd.

personal communication.
1985

M. Carlsson.

Compilation for Tricia and its Abstract Machine.

Technical Report 35, UPMA1L, Uppsala University, September,
1986.

L. M. Censier and P. Feautrier.

A New Solution to Coherence Problems in Multicache Systems.

IEEE Transactions on Computers C-27(12): 1112-1118, December,
1978.

K. L. Clark and S. Gregory.
Notes on the Implementation of PARLOG.

Journal of Logic Programming 2(1), April, 1985.

S. K. Debray.

Efficient Register Allocation for Temporary Variables in the Warren

Prolog Engine.
Research Paper 85/10, Department of Coral:,,, ter Science, SUNY at

Stony Brook, April, 1985.

D. DeGroot.
Restricted And-Parallelism.

In International Conference on Fifth Generation Computer Systems,

pages 471-478. November, 1984.

D. R. Ditzel and H. R. McLellan.

Register Allocation for Free: The C Machine Stack Cache.

In Symposium on Architectural Support for Programming Languages

and Operating Systems, pages 48-56. March, 1982.

T. P. Dobry, Y. N. Patt, and A. M. Despain.
Design Decisions Influencing the Microarchitecture for a Prolog

Machine.

In The Seventeenth Annual Microprogramming Workshop, pages

217-231. IEEE Computer Society, October, 1984.

219

[Dobry 85]

[Dobry 87a]

[Dobry 87b]

[Fagin 85]

[Fairchild 86]

[Flynn 79]

[Flynn 84]

[Flynn 87]

[Gabriel 85]

[Gee 87]

T. P. Dobry, A. M. Despain, and Y. N. Patt.

Performance Studies of a Prolog Machine Architecture.
In 12th Annual International Symposium on Computer Architecture,

pages 180-190. IEEE Computer Society, December, 1985.

T. P. Dobry.

A Coprocessor for AI: LISP, Prolog and Data Bases.
In Proceedings of Spring Compcon '87, pages 396-402. IEEE

Computer Society, February, 1987.

T. P. Dobry.

A High Performance Architecture for Prolog.
PhD thesis, University of California at Berkeley, May, 1987.

B. Fagin and T. P. Dobry.
The Berkeley PLM Instruction Set." An Instruction Set for Prolog.

Research Report UCB/CSD 86/257, Computer Science Division,

University of California at Berkeley, September, 1985.

Introduction to the CLIPPER Architecture.

Fairchild Camera and Instrument Corp., Palo Alto CA 94304.
1986

M. J. Flynn and L. W. Hoevel.

A Theory of Interpretive Architectures: Ideal Language Machines.

Research Paper 170, Stanford Electronics Laboratory, Stanford

University, Stanford, CA 94305, 1979.

M. J. Flynn and L. W. Hoevel.
Measures of Ideal Execution Architectures.

IBM Journal of Research and Development 28(4):356-369, July,
1984.

M. J. Flynn with G. E. Rossmann and A. J. Smith.

Studies in Processor Design.
,1987.

in preparation.

J. Gabriel, T. G. Lindholm, E. L. Lusk, and R. A. Overbeek.

A Tutorial on the Warren Abstract Machine for Computational

Logic.
Research Paper ANL-84-84, Argonne National Laboratory, Argonne,

IL 60439, June, 1985.

J. Gee, S. W. Melvin, Y. N. Patt.

Advantages of Implementing Prolog by Microprogramming a Host
General Purpose Computer.

In Fourth International Conference on Logic Programming.

University of Melborne, MIT Press, May, 1987.

220

[Gibson 67] D. H. Gibson.

Considerations in Block-Oriented Systems Design.

In AFIPS Conference Proceedings, pages 75-80. Spring Joint

Computer Conference, Academic Press, April, 1967.

[Gupta 86] A. Gupta, C. Forgy, A. Newell, and R. Wedig.
Parallel Algorithms and Architectures for Rule-Based Systems.

In I3th Annual International Symposium on Computer Architecture,

pages 28-37. IEEE Computer Society, June, I986.

[Hermenegildo 86]
M. V. Hermenegildo.
An Abstract Machine for the Restricted AND-Parallel Execution of

Logic Programs.
In Third International Conference on Logic Programming, pages

25-39. Imperial College, Springer-Verlag, July, 1986.

[Hermenegildo 87a]

M. V. Hermenegildo.
Restricted AND-Parallel Prolog and its Architecture.
Kluwer Academic Publishers, Norwell, MA 02061, 1987.

[Hermenegildo 87b]
M. V. Hermenegildo and E. Tick.
Performance Evaluation of the RAP-WAM Restricted AND-Parallel

Architecture on Shared Memory Multiprocessors.

Technical Report PP-085-87, Microelectronics and Computer
Technology Corporation (MCC), Austin, TX 78759, March,
1987.

[Hermenegildo 87c]

M. V. Hermenegildo.
Relating Goal Scheduling, Precedence, and Memory Management in

AND-Parallel Execution of Logic Programs.

In Proceedings of the Fourth International Conference on Logic
Programming. MIT Press, May, 1987.

[Hill 84] M. D. Hill and A. J. Smith.

Experimental Evaluation of On-Chip Microprocessor Cache
Memories.

In 11 th Annual International Symposium on Computer A rchitecture,
pages 158-166. IEEE Computer Society, 1984.

[Huck 83] J. C. Huck.

Comparative Analysis of Computer Architectures.
PhD thesis, Stanford University, March, 1983.

also. available as Technical Report CSL-TR-83-243.

[Johnson] S. C. Johnson.

YACC - Yet Another Compiler Compiler.

Unix Programmer's Manual.

• 221

[Kaneda 84]

[Katevenis 83]

[Kleinrock 75]

[Kowalski 74]

[Kowalski 79] "

[Kursawe 86]

[Lesk]

[Lloyd 84]

[Mak 86]

[Matsumoto 85]

[McCarthy 65]

Y. Kaneda.

Sequential PROLOG Machine PEK Architecture and Software

System.

In International Workshop on High-Level Computer Architecture,

pages 4.1-4.6. The University of Maryland, May, 1984.

M. G. H. Katevenis.

Reduced Instruction Set Computer Architectures for VLSI.

PhD thesis, Computer Science Division (EECS), University of
California Berkeley, October, 1983.

L. Kleinrock.

Queueing Systems, Volume 1: Theory.
John Wiley & Sons, 1975.

R. A. Kowalski.

Predicate Logic as a Programming Language.

In/nformation Processing 74, pages 569-574. IF!P Congress, North
Holland, August, 1974.

R. A. Kowalski.

Logic for Problem Solving.
North Holland, 1979.

P. Kursawe.

How To Invent A Prolog Machine.

In Third International Conference on Logic Programming, pages
134-148. Imperial College, Springer-Verlag, July, 1986.

M. E. Lesk and E. Schmidt.

LEX - Lexical Analyzer Generator.

Unix Programmer's Manual.

J. W. Lloyd.

Logic Programming.

Springer-Verlag, 1984.

V. W. K. Mak.

A Survey of Concurrent Architectures.

Technical Report CSL-TR-86-307, Computer Systems Laboratory,
Stanford University, Stanford, CA 94305, September, 1986.

H. Matsumoto.

A Static Analysis of Prolog Programs.
SIGPLANNotices 20(10):48-59, October, 1985.

J. McCarthy.

Lisp 1_5 Programmer's Manual.

MIT Press, Cambridge MA., 1965.

222 .

[Mellish 82]

[MitchEll 86]

[Mulder 87a]

[Mulder 87b]

[Nakashima 87]

[Nakazaki 85]

[Nishikawa 83]

[Onai 86]

[Quintus 86]

[Ratcliffe 85]

C. S. Mellish.

An AltErnative to Structure-Sharing In the Implementation of a
Prolog Interpreter.

In K. L. Clark and S.-A. Tarnlund (editor), Logic Programming,
pages 99-106. Academic Press, 1982.

C. L. Mitchell.

Processor Architecture and Cache Performance.

PhD thesis, Stanford University, June, 1986.
also available as Technical Report CSL-TR-86-296.

J. M. Mulder and E. Tick.

A Performance Comparison Between PLM and an MC68020 Prolog
Processor.

In Fourth International Conference on Logic Programming.

University of Melborne, MIT Press, May, 1987.

J. M. Mulder.

Tradeoffs in Data Buffer Designs.

PhD thesis, Stanford University, 1987.

in preparation.

H. Nakashima and K. Nakajima.

Hardware Architecture of the Sequential Inference Machine: PSI-I/.
In 1987 International Symposium on Logic Programming. IEEE

Computer SociEt?'. August, 1987.

R. Nakazaki, et. al.

Design of a High-speed Prolog Machine (HPM).

In 12th Annual International Symposium on Computer Architecture,

pages 191-197. [EEE Computer Society, June, 1985.

H Nishikawa, M. Yokota, A Yamamoto, K. Taki, S. Uchida.

The Personal Sequential Inference Machine (PSI): Its Design

Philosophy and Machine Architecture.
In Logic Programming Workshop '83, pages 53-73. Universidade

Nova de Lisboa, June, 1983.

R. Onai, H. Shimuzu, K. Masuda, and M. Aso.

Analysis of Sequential Prolog Programs.
Journal of Logic Programming 3(2): 119-141, July, 1986.

Quintus Prolog User's Guide and Reference Manual - Version 6.

Quintus Computer Systems Inc., Mountain View CA 94041.

April, 1986

M. Ratcliffe and P. Robert.

The Static Analysis of Prolog Programs.

Technical Report CA-11, ECRC, October, 1985.

. 223

[Rau 77]

[Robinson 65]
/

[Robinson 79]

[Ross 84]

[Ross 86]

[Roussel 75]

[Seo 87]

[Shapiro 83]

[Shen 86]

[Smith 78]

R. Rau.

Sequential Prefetch Strategies For Instructions and Data.
Research Paper 131, Digital Systems Laboratory, Stanford

University, Stanford, CA 94305, 1977.

J. A. Robinson.

A Machine-Oriented Logic Based on the Resolution Principle.

Journal of the ACM 12:23-41, 1965.

J. A. Robinson.

Logic: Form and Function.
North-Holland, 1979.

M. L. Ross and A. G. McMahon.

Memory Behaviour of a Sequential Prolog Interpreter.

Research Paper 84/6, Dept of Computing, Royal Melbourne Institute
of Technology, 1984.

M. L. Ross and K. Ramamohanarao.

Paging Strategy for Prolog Based on Dynamic Virtual Memory.

Technical Report 86/8, Dept of Computing, Royal Melbourne
Institute of Technology, 1986.

P. Roussel.

Prolog: Manuel de Reference et d' Utilisation.

Technical Report, University d'Aix-Marseille, Groupe de IA,
Marseille, France, 1975.

K. Seo and T. Yokota.

Pegasus: A RISC Processor For High-Performance Execution of

Prolog Programs.

In International Conference on Very Large Scale Integration. IFIP
Congress, August, 1987.

submitted for publication.

E. Y. Shapiro.

A Subset of Concurrent Prolog and lts Interpreter.
Technical Report TR-003, ICOT, Minato-ku Tokyo 108, Japan,

January, 1983.

K. Shen.

An Investigation of the Argonne Model of OR-Parallel Prolog.
Master's thesis, University of Manchester, November, 1986.

A. J. Smith.

A Comparative Study of Set Associative Memory Mapping

Algorithms and Their Use for Cache and Main Memory.
IEEE Transactions on Software Engineering SE-4(2): 121-130,

March, 1978.

224 o

[Smith 82]

[Smith 83]

t

[Steele 84]

[Sterling 86]

[Strecker 76]

[Symbolics 83]

[Tick 85]

[Tick 86]

[Tick 87a]

[Tick 87b]

A. 1. Smith.
Cache Memories.

Computing Surveys :473-530, September, 1982,

J. E. Smith and J. R. Goodman.

A Study of Instruction Cache Organizations and Replacement
Policies.

In lOth Annual International Symposium on Computer Architecture,

pages 132-137. IEEE Computer Society, June, 1983.

G. L. Steele Jr.

Common Lisp.

Digital Press, 1984.

L. Sterling and E. Shapiro.

The Art of Prolog.
The MIT Press, 1986.

W. D. Strecker.

Cache memories for PDP-11 Family Computers.
In 3rd Annual International Symposium on Computer Architecture,

pages 155-158. IEEE Computer Society, January, 1976.

Symbolics 3600 Technical Summary.

Symbolics Inc., Cambridge, MA.
1983

E. Tick.

Prolog Memory-Referencing Behavior.
Technical Report CSL-TR-85-281, Computer Systems Laboratory,

Stanford University, Stanford, CA 94305, September, 1985.

E. Tick.

Memory Performance of Lisp and Prolog Programs.

In Third International Conference on Logic Programming, pages
642-649. Imperial College, Springer-Verlag, July, 1986.

also available as Stanford University Technical Report CSL-
TR-86-291.

E. Tick.

A Prolog Emulator.
Technical Note CSL-TN-87-324, Computer Systems Laboratory,

Stanford University, Stanford, CA 94305, May, 1987.

E. Tick.

A Comparison Between the WAM andDEC-lO Prolog Architectures.

Technical Note CSL-TN-87-323, Computer Systems Laboratory,

Stanford University, Stanford, CA 94305, May, 1987.

225

[Touati 87]

[Turk 86]

[Ueda 85]

[Van Roy 84]

[Van Roy 87]

[Wakefield 82]

[Warren 77]

[Warren 80]

[Warren 81]

[Warren 83a]

H. Touati and A. Despain.

An Empirical Study of the Warren Abstract Machine.
In 1987 International Symposium on Logic Programming.

Computer Society, August, 1987.

IEEE

A. K. Turk.

Compiler Optimizations for the WAM.

In Third International Conference on Logic Programming, pages
657-662. Imperial College, Springer-Verlag, July, 1986.

K. Ueda.

Guarded Horn Clauses.

Technical Report TR-103, ICOT, Minato-ku Tokyo 108, Japan, June,
1985.

P. Van Roy.

A Prolog Compiler for the PLM.

Master's thesis, University. of California at Berkeley, August, !98_.
also available as Technical Report UCB/CSD 84/203.

P. Van Roy and B. Demoen.

Improving the Execution Speed of Compiled Prolog with Modes,
Clause Selection, and Determinism.

In TAPSOFT '87: Joint Conference on Theory and Practice of
Software Development. March, 1987.

S. Wakefield.

Studies in Execution Architectures.

PhD thesis, Stanford University, December, 1982.

also available as Technical Report CSL-TR-83-237.

D. H. D. Warren.

Applied Logic m Its Use and Implementation as Programming Tool.
Phi) thesis, University of Edinburgh, 1977.
also available as SRI Technical Note 290.

D. H. D. Warren.

An Improved Prolog Implementation which Optimises Tail
Recursion.

Research Paper 156, Dept. of Artificial Intelligence, University of
Edinburgh, 1980.

D. H. D. Warren and F. C. N. Pereira.

An Efficient, Easily Adaptable System For Interpreting Natural
Language Queries.

Research Paper 155, Dept. of Artificial Intelligence, University of
Edinburgh, February, 1981.

D. H. D. Warren.

An Abstract Prolog Instruction Set.

Technical Report 309, Artificial Intelligence Center, SRI
International, 1983.

226

[Warren 83b]

[Warren 87]

[Wilk 83]

[Wolfe 87]

[Znidarsic 87]

D. H. D. Warren.

Prolog Engine.
Technical Report, Artificial Intelligence Center, SRI International,

April, 1983.
unpublished draft.

D. H. D. Warren.

OR-Parallel Execution Models of Prolog.
In TAPSOFT '87: Joint Conference on Theory and Practice of

Software Development. March, 1987.

P. F. Wilk.

Prolog Benchraarking.
Research Paper 111, Dept. of Artificial Intelligence, University of

Edinburgh, December, 1983.

A. Wolfe and B. Cole.

The World's Fastest Microprocessor.
Electronics :61, March 19, 1987.

D. Znidarsic.

personal communication.
March, 1987

